Catálogo de publicaciones - libros

Compartir en
redes sociales


Laparoscopic Urologic Surgery in Malignancies

Jean J.M.C.H. de la Rosette ; Inderbir S. Gill (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Urology; Oncology; Surgical Oncology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-20512-8

ISBN electrónico

978-3-540-27606-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Berlin Heidelberg 2005

Tabla de contenidos

Transperitoneal Laparoscopic Adrenalectomy in Malignancies

Giorgio Guazzoni; Andrea Cestari; Francesco Montorsi; Patrizio Rigatti

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

1 - Adrenal Cancer | Pp. 3-10

Retroperitoneal Laparoscopic Adrenalectomy for Malignancy

Simon V. Bariol; David A. Tolley

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

1 - Adrenal Cancer | Pp. 11-16

Transperitoneal Radical Nephrectomy

Alwin F. Tan; Adrian D. Joyce

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

2 - Renal Cell Carcinoma I | Pp. 19-28

Extraperitoneal Laparoscopic Radical Nephrectomy

András Hoznek; Laurent Salomon; Clément-Claude Abbou

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

2 - Renal Cell Carcinoma I | Pp. 29-38

Hand-Assisted Laparoscopic Nephrectomy

François Rozet; Declan Cahill; François Desgrandchamps

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

2 - Renal Cell Carcinoma I | Pp. 39-46

Laparoscopic Partial Nephrectomy

Antonio Finelli; Inderbir S. Gill

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

3 - Renal Cell Carcinoma II | Pp. 49-57

Cryoablation and Other Invasive and Noninvasive Ablative Renal Procedures

Patrick S. Lowry; Stephen Y. Nakada

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

3 - Renal Cell Carcinoma II | Pp. 59-70

Laparoscopic Radical Nephroureterectomy for Upper Tract Transitional Cell Carcinoma

Juan Palou; Antonio Rosales; Nico De Graeve; Humberto Villavicencio

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 71-86

Laparoscopic Radical Cystectomy and Intracorporeally Constructed Sigma-Rectum Pouch (Mainz Pouch II)

Ingolf Tuerk

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

5 - Bladder Cancer | Pp. 89-96

Laparoscopic Radical Cystectomy with Orthotopic Bladder Replacement

Roland F. van Velthoven; Jens Rassweiler

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

5 - Bladder Cancer | Pp. 97-113