Catálogo de publicaciones - libros

Compartir en
redes sociales


Introduction to Probability with Statistical Applications

Géza Schay

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-8176-4497-0

ISBN electrónico

978-0-8176-4591-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Birkhäuser Boston 2007

Tabla de contenidos

The Algebra of Events

Géza Schay

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 1-13

Combinatorial Problems

Géza Schay

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 15-35

Probabilities

Géza Schay

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 37-70

Random Variables

Géza Schay

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 71-125

Expectation, Variance, Moments

Géza Schay

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 127-175

Some Special Distributions

Géza Schay

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 177-220

The Elements of Mathematical Statisti

Géza Schay

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 221-275