Catálogo de publicaciones - libros

Compartir en
redes sociales


An Introduction to Sobolev Spaces and Interpolation Space

Luc Tartar

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Analysis; Partial Differential Equations; Functional Analysis

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-71482-8

ISBN electrónico

978-3-540-71483-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Cobertura temática

Tabla de contenidos

Historical Background

Palabras clave: Sobolev Space; Russian Mathematician; Radon Measure; Historical Background; French Mathematician.

Pp. 1-7

The Lebesgue Measure, Convolution

Palabras clave: Lebesgue Measure; Additive Group; Haar Measure; Russian Mathematician; Convolution Product.

Pp. 9-14

Smoothing by Convolution

Palabras clave: Differential Equation; Partial Differential Equation; Functional Analysis; Unit Ball; Compact Support.

Pp. 15-16

Truncation; Radon Measures; Distributions

Palabras clave: Compact Support; Integrable Function; Radon Measure; Dominate Convergence Theorem; Heaviside Function.

Pp. 17-20

Sobolev Spaces; Multiplication by Smooth Functions

Palabras clave: Smooth Function; Sobolev Space; Hardy Space; Cauchy Sequence; Radon Measure.

Pp. 21-25

Density of Tensor Products; Consequences

Palabras clave: Tensor Product; Unit Ball; Radon Measure; Dominate Convergence Theorem; Closed Unit Ball.

Pp. 27-31

Extending the Notion of Support

Palabras clave: Banach Space; Open Subset; Sobolev Space; Radon Measure; Geodesic Distance.

Pp. 33-36

Sobolev's Embedding Theorem, 1 ≤ < N

Palabras clave: Partial Derivative; Sobolev Space; Elementary Solution; Russian Mathematician; Mathematical Institute.

Pp. 37-41

Sobolev's Embedding Theorem, N ≤ p ≤ ∞

Pp. 43-47

Poincaramp;#x00E9;'s Inequality

Pp. 49-51