Catálogo de publicaciones - libros
The Method of Approximate Inverse: Theory and Applications
Thomas Schuster
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-71226-8
ISBN electrónico
978-3-540-71227-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2007
Cobertura temática
Tabla de contenidos
Ill-posed problems and regularization methods
Thomas Schuster
Part I - Inverse and Semi-discrete Problems | Pp. 5-9
Approximate inverse in L ^2-spaces
Thomas Schuster
Palabras clave: Invariance Property; Inversion Formula; Inversion Scheme; Approximate Inverse; Reconstruction Kernel.
Part I - Inverse and Semi-discrete Problems | Pp. 11-24
Approximate inverse in Hilbert spaces
Thomas Schuster
Palabras clave: Hilbert Space; Inversion Formula; Interpolation Operator; Observation Operator; Approximate Inverse.
Part I - Inverse and Semi-discrete Problems | Pp. 25-38
Approximate inverse in distribution spaces
Thomas Schuster
Palabras clave: Dual Space; Distribution Space; Observation Operator; Approximate Inverse; Reconstruction Kernel.
Part I - Inverse and Semi-discrete Problems | Pp. 39-47
Conclusion and perspectives
Thomas Schuster
Part I - Inverse and Semi-discrete Problems | Pp. 49-49
A semi-discrete setup for Doppler tomography
Thomas Schuster
Palabras clave: Sobolev Space; Doppler Shift; Point Evaluation; Doppler Tomography; Coordinate Plane.
Part II - Application to 3D Doppler Tomography | Pp. 55-61
Solving the semi-discrete problem
Thomas Schuster
Palabras clave: Tensor Product; Normal Equation; Adjoint Operator; Interpolation Operator; Approximate Inverse.
Part II - Application to 3D Doppler Tomography | Pp. 63-79
Convergence and stability
Thomas Schuster
Palabras clave: Regularization Parameter; Triangle Inequality; Reconstruction Error; Inversion Method; Sobolev Norm.
Part II - Application to 3D Doppler Tomography | Pp. 81-87
Approaches for defect correction
Thomas Schuster
Palabras clave: Dirichlet Problem; Boundary Element Method; Collocation Method; Neumann Problem; Newton Potential.
Part II - Application to 3D Doppler Tomography | Pp. 89-103
Conclusion and perspectives
Thomas Schuster
Part II - Application to 3D Doppler Tomography | Pp. 105-106