Catálogo de publicaciones - tesis
Título de Acceso Abierto
Modelización de secuencias para el reconocimiento automático de patrones
César Ernesto Martínez Hugo Leonardo Rufiner Juan Carlos Gómez Marcelo Risk Pablo Granitto Diego Humberto Milone
acceptedVersion.
Resumen/Descripción – provisto por el repositorio digital
Sequence modeling is a problem of interest in the field of pattern recognition. It is aimed at the design and building of specialized systems that capture the particularities of distinctive segments of the sequences and their repetition structure. These systems could be used for both classification (discriminative models) as well as for synthesis (generative models). In this work we present progresses on the feature extraction and sequence modeling in two domains of applications: classification of chromosome images and robust speech recognition. In the first one, new parameterizations are here proposed to exploit the variability of the gray bands along the chromosomes. New ways to classify these patterns based on recurrent neural networks and continuous hidden Markov models are introduced. Furthermore, a contextual post-classification algorithm is proposed to carry out a relocation of chromosomes in each class according to the expected number of chromosomes in a cell. For the speech signal representation, new bioinspired alternatives to the speech parameterization are proposed, which model the activation of the primary auditory cortex in response to sound stimuli. The sparse coding patterns obtained are applied to robust phoneme classification and speech denoising. The obtained results show that these techniques can extract useful clues for recognition and retrieval of information that objetively preserve the quality of the denoised signals, with performance benefits over other methods previously reported.Palabras clave – provistas por el repositorio digital
Pattern recognition; Chromosome classification; Automatic karyotyping; Sparse coding; Approximated cortical representation; Robust speech recognition; Reconocimiento de patrones; Clasificación de cromosomas; Cariotipado automático; Representaciones ralas; Representación cortical aproximada; Reconocimiento robusto del habla
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No requiere | 2011 | Biblioteca Virtual de la Universidad Nacional del Litoral (SNRD) |
Información
Tipo de recurso:
tesis
Idiomas de la publicación
- español castellano
País de edición
Argentina
Fecha de publicación
2011-11-02