Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature Materials

Resumen/Descripción – provisto por la editorial en inglés
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. Materials research is a diverse and fast-growing discipline, which has moved from a largely applied, engineering focus to a position where it has an increasing impact on other classical disciplines such as physics, chemistry and biology. Nature Materials covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties and performance of materials, where "materials" are identified as substances in the condensed states (liquid, solid, colloidal) designed or manipulated for technological ends.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com

Información

Tipo de recurso:

revistas

ISSN impreso

1476-1122

ISSN electrónico

1476-4660

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Angle-resolved transport non-reciprocity and spontaneous symmetry breaking in twisted trilayer graphene

Naiyuan James ZhangORCID; Jiang-Xiazi LinORCID; Dmitry V. ChichinadzeORCID; Yibang Wang; Kenji WatanabeORCID; Takashi TaniguchiORCID; Liang FuORCID; J. I. A. LiORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Creating chirality in the nearly two dimensions

Hanyu ZhuORCID; Boris I. YakobsonORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Trapped O2 and the origin of voltage fade in layered Li-rich cathodes

John-Joseph MarieORCID; Robert A. HouseORCID; Gregory J. ReesORCID; Alex W. RobertsonORCID; Max Jenkins; Jun ChenORCID; Stefano AgrestiniORCID; Mirian Garcia-FernandezORCID; Ke-Jin ZhouORCID; Peter G. BruceORCID

<jats:title>Abstract</jats:title><jats:p>Oxygen redox cathodes, such as Li<jats:sub>1.2</jats:sub>Ni<jats:sub>0.13</jats:sub>Co<jats:sub>0.13</jats:sub>Mn<jats:sub>0.54</jats:sub>O<jats:sub>2</jats:sub>, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O<jats:sup>2−</jats:sup> ions forms O<jats:sub>2</jats:sub> molecules trapped in nano-sized voids within the structure, which can be fully reduced to O<jats:sup>2−</jats:sup> on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O<jats:sup>2−</jats:sup>/O<jats:sub>2</jats:sub> redox process and O<jats:sub>2</jats:sub> loss. The closed voids that trap O<jats:sub>2</jats:sub> grow on cycling, rendering more of the trapped O<jats:sub>2</jats:sub> electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O<jats:sub>2</jats:sub>. Our findings implicate the thermodynamic driving force to form O<jats:sub>2</jats:sub> as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.</jats:p>

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Crafting moiré and chirality in two dimensions

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. 301-301

Beyond rare earths

Philip Ball

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. 303-303

Unveiling the intricate moiré of moiré texture

Ruichun LuoORCID; Wu ZhouORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. 304-305

A thicker skin for better immune evasion

Edward N. SchmidtORCID; Matthew S. MacauleyORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. 312-313

Discovery of orbital ordering in Bi2Sr2CaCu2O8+x

Shuqiu WangORCID; Niall KennedyORCID; Kazuhiro FujitaORCID; Shin-ichi Uchida; Hiroshi EisakiORCID; Peter D. Johnson; J. C. Séamus DavisORCID; Shane M. O’Mahony

<jats:title>Abstract</jats:title><jats:p>The primordial ingredient of cuprate superconductivity is the CuO<jats:sub>2</jats:sub> unit cell. Theories usually concentrate on the intra-atom Coulombic interactions dominating the 3<jats:italic>d</jats:italic><jats:sup>9</jats:sup> and 3<jats:italic>d</jats:italic><jats:sup>10</jats:sup> configurations of each copper ion. However, if Coulombic interactions also occur between electrons of the 2<jats:italic>p</jats:italic><jats:sup>6</jats:sup> orbitals of each planar oxygen atom, spontaneous orbital ordering may split their energy levels. This long-predicted intra-unit-cell symmetry breaking should generate an orbitally ordered phase, for which the charge transfer energy <jats:italic>ε</jats:italic> separating the 2<jats:italic>p</jats:italic><jats:sup>6</jats:sup> and 3<jats:italic>d</jats:italic><jats:sup>10</jats:sup> orbitals is distinct for the two oxygen atoms. Here we introduce sublattice-resolved <jats:italic>ε</jats:italic>(<jats:bold>r</jats:bold>) imaging to CuO<jats:sub>2</jats:sub> studies and discover intra-unit-cell rotational symmetry breaking of <jats:italic>ε</jats:italic>(<jats:bold>r</jats:bold>). Spatially, this state is arranged in disordered Ising domains of orthogonally oriented orbital order bounded by dopant ions, and within whose domain walls low-energy electronic quadrupolar two-level systems occur. Overall, these data reveal a <jats:italic>Q</jats:italic> = 0 orbitally ordered state that splits the oxygen energy levels by ~50 meV, in underdoped CuO<jats:sub>2</jats:sub>.</jats:p>

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Author Correction: Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal

Zhi-Kang Lin; Ying WuORCID; Bin Jiang; Yang Liu; Shi-Qiao Wu; Feng LiORCID; Jian-Hua JiangORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

An intelligent DNA nanodevice for precision thrombolysis

Jue Yin; Siyu Wang; Jiahui Wang; Yewei Zhang; Chunhai FanORCID; Jie ChaoORCID; Yu GaoORCID; Lianhui WangORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible