Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature Materials

Resumen/Descripción – provisto por la editorial en inglés
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. Materials research is a diverse and fast-growing discipline, which has moved from a largely applied, engineering focus to a position where it has an increasing impact on other classical disciplines such as physics, chemistry and biology. Nature Materials covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties and performance of materials, where "materials" are identified as substances in the condensed states (liquid, solid, colloidal) designed or manipulated for technological ends.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com

Información

Tipo de recurso:

revistas

ISSN impreso

1476-1122

ISSN electrónico

1476-4660

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Fractured diamond can heal itself at room temperature

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Self-healing of fractured diamond

Keliang QiuORCID; Jingpeng HouORCID; Shuai ChenORCID; Xiang Li; Yonghai YueORCID; Bo XuORCID; Qi Hu; Limin LiuORCID; Zhenyu YangORCID; Anmin NieORCID; Yufei Gao; Tianye JinORCID; Jing Wang; Yanhong Li; Yanbin WangORCID; Yongjun TianORCID; Lin GuoORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Improving lithium-ion cells by replacing polyethylene terephthalate jellyroll tape

Anu AdamsonORCID; Kenneth TuulORCID; Tom BötticherORCID; Saad Azam; Matthew D. L. GaraytORCID; Michael MetzgerORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Unit-cell-thick zeolitic imidazolate framework films for membrane application

Qi LiuORCID; Yurun MiaoORCID; Luis Francisco VillalobosORCID; Shaoxian Li; Heng-Yu ChiORCID; Cailing ChenORCID; Mohammad Tohidi Vahdat; Shuqing SongORCID; Deepu J. BabuORCID; Jian Hao; Yu HanORCID; Michael TsapatsisORCID; Kumar Varoon AgrawalORCID

<jats:title>Abstract</jats:title><jats:p>Zeolitic imidazolate frameworks (ZIFs) are a subset of metal–organic frameworks with more than 200 characterized crystalline and amorphous networks made of divalent transition metal centres (for example, Zn<jats:sup>2+</jats:sup> and Co<jats:sup>2+</jats:sup>) linked by imidazolate linkers. ZIF thin films have been intensively pursued, motivated by the desire to prepare membranes for selective gas and liquid separations. To achieve membranes with high throughput, as in ångström-scale biological channels with nanometre-scale path lengths, ZIF films with the minimum possible thickness—down to just one unit cell—are highly desired. However, the state-of-the-art methods yield membranes where ZIF films have thickness exceeding 50 nm. Here we report a crystallization method from ultradilute precursor mixtures, which exploits registry with the underlying crystalline substrate, yielding (within minutes) crystalline ZIF films with thickness down to that of a single structural building unit (2 nm). The film crystallized on graphene has a rigid aperture made of a six-membered zinc imidazolate coordination ring, enabling high-permselective H<jats:sub>2</jats:sub> separation performance. The method reported here will probably accelerate the development of two-dimensional metal–organic framework films for efficient membrane separation.</jats:p>

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics

Elzbieta GradauskaiteORCID; Quintin N. MeierORCID; Natascha Gray; Martin F. SarottORCID; Tizian ScharsachORCID; Marco CampaniniORCID; Thomas Moran; Alexander VogelORCID; Karla Del Cid-Ledezma; Bryan D. HueyORCID; Marta D. RossellORCID; Manfred FiebigORCID; Morgan TrassinORCID

<jats:title>Abstract</jats:title><jats:p>Material surfaces encompass structural and chemical discontinuities that often lead to the loss of the property of interest in so-called dead layers. It is particularly problematic in nanoscale oxide electronics, where the integration of strongly correlated materials into devices is obstructed by the thickness threshold required for the emergence of their functionality. Here we report the stabilization of ultrathin out-of-plane ferroelectricity in oxide heterostructures through the design of an artificial flux-closure architecture. Inserting an in-plane-polarized ferroelectric epitaxial buffer provides the continuity of polarization at the interface; despite its insulating nature, we observe the emergence of polarization in our out-of-plane-polarized model of ferroelectric BaTiO<jats:sub>3</jats:sub> from the very first unit cell. In BiFeO<jats:sub>3</jats:sub>, the flux-closure approach stabilizes a 251° domain wall. Its unusual chirality is probably associated with the ferroelectric analogue to the Dzyaloshinskii–Moriya interaction. We, thus, see that in an adaptively engineered geometry, the depolarizing-field-screening properties of an insulator can even surpass those of a metal and be a source of functionality. This could be a useful insight on the road towards the next generation of oxide electronics.</jats:p>

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Decoupling the roles of Ni and Co in anionic redox activity of Li-rich NMC cathodes

Biao LiORCID; Zengqing ZhuoORCID; Leiting ZhangORCID; Antonella Iadecola; Xu Gao; Jinghua GuoORCID; Wanli YangORCID; Anatolii V. MorozovORCID; Artem M. AbakumovORCID; Jean-Marie TarasconORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Self-rectifying magnetoelectric metamaterials for remote neural stimulation and motor function restoration

Joshua C. ChenORCID; Gauri Bhave; Fatima AlrashdanORCID; Abdeali DhuliyawallaORCID; Katie J. Hogan; Antonios G. MikosORCID; Jacob T. RobinsonORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Optimizing hierarchical membrane/catalyst systems for oxidative coupling of methane using additive manufacturing

James WortmanORCID; Valentina Omoze Igenegbai; Rawan Almallahi; Ali Hussain Motagamwala; Suljo LinicORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers

Ji-Hwan BaekORCID; Hyoung Gyun Kim; Soo Yeon LimORCID; Seong Chul HongORCID; Yunyeong Chang; Huije Ryu; Yeonjoon Jung; Hajung Jang; Jungcheol Kim; Yichao ZhangORCID; Kenji WatanabeORCID; Takashi TaniguchiORCID; Pinshane Y. HuangORCID; Hyeonsik CheongORCID; Miyoung Kim; Gwan-Hyoung LeeORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Publisher Correction: Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing

Guangjian WuORCID; Xumeng ZhangORCID; Guangdi Feng; Jingli WangORCID; Keji Zhou; Jinhua Zeng; Danian Dong; Fangduo Zhu; Chenkai Yang; Xiaoming Zhao; Danni Gong; Mengru Zhang; Bobo TianORCID; Chungang Duan; Qi LiuORCID; Jianlu WangORCID; Junhao Chu; Ming Liu

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible