Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Hydra recovers from the “Blip”

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 867.1-867

Collapse of fluke populations

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 867.2-868

Fluid support

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 867.3-868

Epigenetic control of metastasis

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 867.4-868

Contrapuntal gene risk

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 867.5-868

Methane on Mars is transient and local

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 867.6-868

When an internship adds value

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 867.7-868

Accurate prediction of protein structures and interactions using a three-track neural network

Minkyung BaekORCID; Frank DiMaioORCID; Ivan AnishchenkoORCID; Justas DauparasORCID; Sergey OvchinnikovORCID; Gyu Rie LeeORCID; Jue WangORCID; Qian CongORCID; Lisa N. KinchORCID; R. Dustin SchaefferORCID; Claudia MillánORCID; Hahnbeom ParkORCID; Carson Adams; Caleb R. GlassmanORCID; Andy DeGiovanni; Jose H. PereiraORCID; Andria V. Rodrigues; Alberdina A. van Dijk; Ana C. EbrechtORCID; Diederik J. OppermanORCID; Theo SagmeisterORCID; Christoph BuhlhellerORCID; Tea Pavkov-KellerORCID; Manoj K. RathinaswamyORCID; Udit Dalwadi; Calvin K. YipORCID; John E. BurkeORCID; K. Christopher GarciaORCID; Nick V. GrishinORCID; Paul D. AdamsORCID; Randy J. ReadORCID; David BakerORCID

<jats:title>Deep learning takes on protein folding</jats:title> <jats:p> In 1972, Anfinsen won a Nobel prize for demonstrating a connection between a protein’s amino acid sequence and its three-dimensional structure. Since 1994, scientists have competed in the biannual Critical Assessment of Structure Prediction (CASP) protein-folding challenge. Deep learning methods took center stage at CASP14, with DeepMind’s Alphafold2 achieving remarkable accuracy. Baek <jats:italic>et al</jats:italic> . explored network architectures based on the DeepMind framework. They used a three-track network to process sequence, distance, and coordinate information simultaneously and achieved accuracies approaching those of DeepMind. The method, RoseTTA fold, can solve challenging x-ray crystallography and cryo–electron microscopy modeling problems and generate accurate models of protein-protein complexes. —VV </jats:p>

Palabras clave: Multidisciplinary.

Pp. 871-876

Mechanisms that ensure speed and fidelity in eukaryotic translation termination

Michael R. LawsonORCID; Laura N. LessenORCID; Jinfan WangORCID; Arjun PrabhakarORCID; Nicholas C. Corsepius; Rachel GreenORCID; Joseph D. PuglisiORCID

<jats:title>How translation stops</jats:title> <jats:p> Protein synthesis concludes when a ribosome encounters a stop codon in a transcript, which triggers the recruitment of highly conserved release factors to liberate the protein product. Lawson <jats:italic>et al</jats:italic> . used traditional biochemical methods and single-molecule fluorescence assays to track the interplay of release factors with ribosomes and reveal the molecular choreography of termination. They identified two distinct classes of effectors, small molecules and mRNA sequences, that directly inhibited the release factors and promoted stop codon readthrough. These findings may buttress ongoing efforts to treat diseases caused by premature stop codons, which cause 11% of all heritable human diseases. —DJ </jats:p>

Palabras clave: Multidisciplinary.

Pp. 876-882

Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery

Michael SegelORCID; Blake LashORCID; Jingwei SongORCID; Alim LadhaORCID; Catherine C. LiuORCID; Xin JinORCID; Sergei L. Mekhedov; Rhiannon K. MacraeORCID; Eugene V. KooninORCID; Feng ZhangORCID

<jats:title>Hitching a ride with a retroelement</jats:title> <jats:p> Retroviruses and retroelements have inserted their genetic code into mammalian genomes throughout evolution. Although many of these integrated virus-like sequences pose a threat to genomic integrity, some have been retooled by mammalian cells to perform essential roles in development. Segel <jats:italic>et al</jats:italic> . found that one of these retroviral-like proteins, PEG10, directly binds to and secretes its own mRNA in extracellular virus–like capsids. These virus-like particles were then pseudotyped with fusogens to deliver functional mRNA cargos to mammalian cells. This potentially provides an endogenous vector for RNA-based gene therapy. —DJ </jats:p>

Palabras clave: Multidisciplinary.

Pp. 882-889