Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Taking machine learning to heart

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 1052.2-1052

N-heterocyclic carbenes by compression

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 1052.3-1052

Origins of the sweaty ape

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 1052.4-1053

Hydrogen coal storage

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 1052.5-1053

Harnessing the dark to store light

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 1052.6-1053

Cells feel the strain

Caroline Ash; Jesse Smith (eds.)

Palabras clave: Multidisciplinary.

Pp. 1052.7-1053

Sense codon reassignment enables viral resistance and encoded polymer synthesis

Wesley E. RobertsonORCID; Louise F. H. FunkeORCID; Daniel de la TorreORCID; Julius FredensORCID; Thomas S. Elliott; Martin SpinckORCID; Yonka ChristovaORCID; Daniele CervettiniORCID; Franz L. Böge; Kim C. LiuORCID; Salvador BuseORCID; Sarah MaslenORCID; George P. C. Salmond; Jason W. ChinORCID

<jats:title>Designing bacterial superpowers</jats:title> <jats:p> Biological systems read all 64 triplet codons in DNA to encode the synthesis of proteins composed of 20 canonical amino acids. Robertson <jats:italic>et al.</jats:italic> created cells that do not read several codons and showed that this confers complete resistance to viruses, which normally rely on the host cell's ability to read all the codons in the viral genome to reproduce (see the Perspective by Jewel and Chatterjee). The authors reassigned each codon to several noncanonical amino acids (ncAAs). This advance enables the efficient synthesis of proteins containing three distinct ncAAs and the encoded synthesis of entirely noncanonical polymers and macrocycles. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abg3029, this issue p. <jats:related-article issue="6546" page="1057" related-article-type="in-this-issue" vol="372">1057</jats:related-article> ; see also abi9892, p. <jats:related-article issue="6546" page="1040" related-article-type="in-this-issue" vol="372">1040</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1057-1062

Establishing gold and platinum standards to 1 terapascal using shockless compression

D. E. FratanduonoORCID; M. MillotORCID; D. G. Braun; S. J. AliORCID; A. Fernandez-PañellaORCID; C. T. Seagle; J.-P. DavisORCID; J. L. BrownORCID; Y. AkahamaORCID; R. G. KrausORCID; M. C. MarshallORCID; R. F. SmithORCID; E. F. O’BannonORCID; J. M. McNaneyORCID; J. H. EggertORCID

<jats:title>Pushing a pressure standard</jats:title> <jats:p> A challenge for understanding systems at extreme conditions is knowing the exact pressure at which exotic behaviors occur. This situation is caused by the lack of an absolute pressure-density relationship of standard pressure calibrants. Fratanduono <jats:italic>et al.</jats:italic> conducted a series of dynamic compression observations on platinum and gold to establish a high-pressure scale for these metals up to terapascal conditions (see the Perpsective by Jeanloz). This work provides a robust calibration when using these standards in high-pressure devices such as diamond anvil cells. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abh0364, this issue p. <jats:related-article issue="6546" page="1063" related-article-type="in-this-issue" vol="372">1063</jats:related-article> ; see also abi8015, p. <jats:related-article issue="6546" page="1037" related-article-type="in-this-issue" vol="372">1037</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1063-1068

Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks

Daniel T. PederickORCID; Jan H. LuiORCID; Ellen C. GingrichORCID; Chuanyun Xu; Mark J. WagnerORCID; Yuanyuan Liu; Zhigang HeORCID; Stephen R. QuakeORCID; Liqun LuoORCID

<jats:title>Keeping brain development untangled</jats:title> <jats:p> Brain circuits established during development can be overlapping or parallel as needed. Pederick <jats:italic>et al.</jats:italic> analyzed how parallel circuits in the mouse medial and lateral hippocampus develop without getting tangled up. Regulated expression of the cell surface molecules teneurin-3 (Ten3) and latrophilin-2 (Lphn2) keeps confusion at bay. Together, these factors act as a membrane-bound ligand-receptor pair with repulsive outcomes, and they are able to destabilize a nascent but incorrect axon-target interaction. Individually, they each mediate homophilic attraction as axons search for their favored targets. </jats:p> <jats:p> Science, abg1774, this issue p. <jats:related-article issue="6546" page="1068" related-article-type="in-this-issue" vol="372">1068</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1068-1073

CO 2 electrolysis to multicarbon products in strong acid

Jianan Erick HuangORCID; Fengwang LiORCID; Adnan OzdenORCID; Armin Sedighian Rasouli; F. Pelayo García de ArquerORCID; Shijie LiuORCID; Shuzhen ZhangORCID; Mingchuan LuoORCID; Xue WangORCID; Yanwei LumORCID; Yi XuORCID; Koen Bertens; Rui Kai MiaoORCID; Cao-Thang DinhORCID; David SintonORCID; Edward H. SargentORCID

<jats:title> Potassium helps CO <jats:sub>2</jats:sub> compete in acid </jats:title> <jats:p> Electrochemical reduction of carbon dioxide (CO <jats:sub>2</jats:sub> ) is a promising means of converting this greenhouse gas into valuable fuels and chemicals. However, two competing reactions restrict the efficiency of this process. In base, much of the CO <jats:sub>2</jats:sub> is trapped as carbonate before reduction; in acid, protons outpace CO <jats:sub>2</jats:sub> at catching electrons from the cathode. Huang <jats:italic>et al.</jats:italic> report that a high dose of potassium ions can help to solve the latter problem. By concentrating potassium ions at the electrode, high selectivity toward CO <jats:sub>2</jats:sub> reduction at high current in acid is possible, which the authors attribute to electrostatic stabilization of the desired adsorbates. </jats:p> <jats:p> <jats:italic>Science</jats:italic> , abg6582, this issue p. <jats:related-article issue="6546" page="1074" related-article-type="in-this-issue" vol="372">1074</jats:related-article> </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1074-1078