Catálogo de publicaciones - revistas
Nature
Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com | ||
No detectada | desde jul. 2006 / hasta ago. 2012 | Ovid |
Información
Tipo de recurso:
revistas
ISSN impreso
0028-0836
ISSN electrónico
1476-4687
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1869-
Tabla de contenidos
Rare coding variants in ten genes confer substantial risk for schizophrenia
Tarjinder Singh; Timothy Poterba; David Curtis; Huda Akil; Mariam Al Eissa; Jack D. Barchas; Nicholas Bass; Tim B. Bigdeli; Gerome Breen; Evelyn J. Bromet; Peter F. Buckley; William E. Bunney; Jonas Bybjerg-Grauholm; William F. Byerley; Sinéad B. Chapman; Wei J. Chen; Claire Churchhouse; Nicholas Craddock; Caroline M. Cusick; Lynn DeLisi; Sheila Dodge; Michael A. Escamilla; Saana Eskelinen; Ayman H. Fanous; Stephen V. Faraone; Alessia Fiorentino; Laurent Francioli; Stacey B. Gabriel; Diane Gage; Sarah A. Gagliano Taliun; Andrea Ganna; Giulio Genovese; David C. Glahn; Jakob Grove; Mei-Hua Hall; Eija Hämäläinen; Henrike O. Heyne; Matti Holi; David M. Hougaard; Daniel P. Howrigan; Hailiang Huang; Hai-Gwo Hwu; René S. Kahn; Hyun Min Kang; Konrad J. Karczewski; George Kirov; James A. Knowles; Francis S. Lee; Douglas S. Lehrer; Francesco Lescai; Dolores Malaspina; Stephen R. Marder; Steven A. McCarroll; Andrew M. McIntosh; Helena Medeiros; Lili Milani; Christopher P. Morley; Derek W. Morris; Preben Bo Mortensen; Richard M. Myers; Merete Nordentoft; Niamh L. O’Brien; Ana Maria Olivares; Dost Ongur; Willem H. Ouwehand; Duncan S. Palmer; Tiina Paunio; Digby Quested; Mark H. Rapaport; Elliott Rees; Brandi Rollins; F. Kyle Satterstrom; Alan Schatzberg; Edward Scolnick; Laura J. Scott; Sally I. Sharp; Pamela Sklar; Jordan W. Smoller; Janet L. Sobell; Matthew Solomonson; Eli A. Stahl; Christine R. Stevens; Jaana Suvisaari; Grace Tiao; Stanley J. Watson; Nicholas A. Watts; Douglas H. Blackwood; Anders D. Børglum; Bruce M. Cohen; Aiden P. Corvin; Tõnu Esko; Nelson B. Freimer; Stephen J. Glatt; Christina M. Hultman; Andrew McQuillin; Aarno Palotie; Carlos N. Pato; Michele T. Pato; Ann E. Pulver; David St. Clair; Ming T. Tsuang; Marquis P. Vawter; James T. Walters; Thomas M. Werge; Roel A. Ophoff; Patrick F. Sullivan; Michael J. Owen; Michael Boehnke; Michael C. O’Donovan; Benjamin M. Neale; Mark J. Daly
Palabras clave: Multidisciplinary.
Pp. 509-516
Somatic mutation rates scale with lifespan across mammals
Alex Cagan; Adrian Baez-Ortega; Natalia Brzozowska; Federico Abascal; Tim H. H. Coorens; Mathijs A. Sanders; Andrew R. J. Lawson; Luke M. R. Harvey; Shriram Bhosle; David Jones; Raul E. Alcantara; Timothy M. Butler; Yvette Hooks; Kirsty Roberts; Elizabeth Anderson; Sharna Lunn; Edmund Flach; Simon Spiro; Inez Januszczak; Ethan Wrigglesworth; Hannah Jenkins; Tilly Dallas; Nic Masters; Matthew W. Perkins; Robert Deaville; Megan Druce; Ruzhica Bogeska; Michael D. Milsom; Björn Neumann; Frank Gorman; Fernando Constantino-Casas; Laura Peachey; Diana Bochynska; Ewan St. John Smith; Moritz Gerstung; Peter J. Campbell; Elizabeth P. Murchison; Michael R. Stratton; Iñigo Martincorena
<jats:title>Abstract</jats:title><jats:p>The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans<jats:sup>1–7</jats:sup>. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans<jats:sup>8</jats:sup>, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined—including variation of around 30-fold in lifespan and around 40,000-fold in body mass—the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 517-524
Brain charts for the human lifespan
R. A. I. Bethlehem; J. Seidlitz; S. R. White; J. W. Vogel; K. M. Anderson; C. Adamson; S. Adler; G. S. Alexopoulos; E. Anagnostou; A. Areces-Gonzalez; D. E. Astle; B. Auyeung; M. Ayub; J. Bae; G. Ball; S. Baron-Cohen; R. Beare; S. A. Bedford; V. Benegal; F. Beyer; J. Blangero; M. Blesa Cábez; J. P. Boardman; M. Borzage; J. F. Bosch-Bayard; N. Bourke; V. D. Calhoun; M. M. Chakravarty; C. Chen; C. Chertavian; G. Chetelat; Y. S. Chong; J. H. Cole; A. Corvin; M. Costantino; E. Courchesne; F. Crivello; V. L. Cropley; J. Crosbie; N. Crossley; M. Delarue; R. Delorme; S. Desrivieres; G. A. Devenyi; M. A. Di Biase; R. Dolan; K. A. Donald; G. Donohoe; K. Dunlop; A. D. Edwards; J. T. Elison; C. T. Ellis; J. A. Elman; L. Eyler; D. A. Fair; E. Feczko; P. C. Fletcher; P. Fonagy; C. E. Franz; L. Galan-Garcia; A. Gholipour; J. Giedd; J. H. Gilmore; D. C. Glahn; I. M. Goodyer; P. E. Grant; N. A. Groenewold; F. M. Gunning; R. E. Gur; R. C. Gur; C. F. Hammill; O. Hansson; T. Hedden; A. Heinz; R. N. Henson; K. Heuer; J. Hoare; B. Holla; A. J. Holmes; R. Holt; H. Huang; K. Im; J. Ipser; C. R. Jack; A. P. Jackowski; T. Jia; K. A. Johnson; P. B. Jones; D. T. Jones; R. S. Kahn; H. Karlsson; L. Karlsson; R. Kawashima; E. A. Kelley; S. Kern; K. W. Kim; M. G. Kitzbichler; W. S. Kremen; F. Lalonde; B. Landeau; S. Lee; J. Lerch; J. D. Lewis; J. Li; W. Liao; C. Liston; M. V. Lombardo; J. Lv; C. Lynch; T. T. Mallard; M. Marcelis; R. D. Markello; S. R. Mathias; B. Mazoyer; P. McGuire; M. J. Meaney; A. Mechelli; N. Medic; B. Misic; S. E. Morgan; D. Mothersill; J. Nigg; M. Q. W. Ong; C. Ortinau; R. Ossenkoppele; M. Ouyang; L. Palaniyappan; L. Paly; P. M. Pan; C. Pantelis; M. M. Park; T. Paus; Z. Pausova; D. Paz-Linares; A. Pichet Binette; K. Pierce; X. Qian; J. Qiu; A. Qiu; A. Raznahan; T. Rittman; A. Rodrigue; C. K. Rollins; R. Romero-Garcia; L. Ronan; M. D. Rosenberg; D. H. Rowitch; G. A. Salum; T. D. Satterthwaite; H. L. Schaare; R. J. Schachar; A. P. Schultz; G. Schumann; M. Schöll; D. Sharp; R. T. Shinohara; I. Skoog; C. D. Smyser; R. A. Sperling; D. J. Stein; A. Stolicyn; J. Suckling; G. Sullivan; Y. Taki; B. Thyreau; R. Toro; N. Traut; K. A. Tsvetanov; N. B. Turk-Browne; J. J. Tuulari; C. Tzourio; É. Vachon-Presseau; M. J. Valdes-Sosa; P. A. Valdes-Sosa; S. L. Valk; T. van Amelsvoort; S. N. Vandekar; L. Vasung; L. W. Victoria; S. Villeneuve; A. Villringer; P. E. Vértes; K. Wagstyl; Y. S. Wang; S. K. Warfield; V. Warrier; E. Westman; M. L. Westwater; H. C. Whalley; A. V. Witte; N. Yang; B. Yeo; H. Yun; A. Zalesky; H. J. Zar; A. Zettergren; J. H. Zhou; H. Ziauddeen; A. Zugman; X. N. Zuo; C. Rowe; G. B. Frisoni; A. Pichet Binette; E. T. Bullmore; A. F. Alexander-Bloch; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
<jats:title>Abstract</jats:title><jats:p>Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight<jats:sup>1</jats:sup>. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.brainchart.io/">http://www.brainchart.io/</jats:ext-link>). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories<jats:sup>2</jats:sup> of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones<jats:sup>3</jats:sup>, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 525-533
Mapping human haematopoietic stem cells from haemogenic endothelium to birth
Vincenzo Calvanese; Sandra Capellera-Garcia; Feiyang Ma; Iman Fares; Simone Liebscher; Elizabeth S. Ng; Sophia Ekstrand; Júlia Aguadé-Gorgorió; Anastasia Vavilina; Diane Lefaudeux; Brian Nadel; Jacky Y. Li; Yanling Wang; Lydia K. Lee; Reza Ardehali; M. Luisa Iruela-Arispe; Matteo Pellegrini; Ed G. Stanley; Andrew G. Elefanty; Katja Schenke-Layland; Hanna K. A. Mikkola
Palabras clave: Multidisciplinary.
Pp. 534-540
Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile
Xinyun Cao; Hande Boyaci; James Chen; Yu Bao; Robert Landick; Elizabeth A. Campbell
Palabras clave: Multidisciplinary.
Pp. 541-545
Molecular basis of receptor binding and antibody neutralization of Omicron
Qin Hong; Wenyu Han; Jiawei Li; Shiqi Xu; Yifan Wang; Cong Xu; Zuyang Li; Yanxing Wang; Chao Zhang; Zhong Huang; Yao Cong
Palabras clave: Multidisciplinary.
Pp. 546-552
Antibody evasion properties of SARS-CoV-2 Omicron sublineages
Sho Iketani; Lihong Liu; Yicheng Guo; Liyuan Liu; Jasper F.-W. Chan; Yiming Huang; Maple Wang; Yang Luo; Jian Yu; Hin Chu; Kenn K.-H. Chik; Terrence T.-T. Yuen; Michael T. Yin; Magdalena E. Sobieszczyk; Yaoxing Huang; Kwok-Yung Yuen; Harris H. Wang; Zizhang Sheng; David D. Ho
<jats:title>Abstract</jats:title><jats:p>The identification of the Omicron (B.1.1.529.1 or BA.1) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Botswana in November 2021<jats:sup>1</jats:sup> immediately caused concern owing to the number of alterations in the spike glycoprotein that could lead to antibody evasion. We<jats:sup>2</jats:sup> and others<jats:sup>3–6</jats:sup> recently reported results confirming such a concern. Continuing surveillance of the evolution of Omicron has since revealed the rise in prevalence of two sublineages, BA.1 with an R346K alteration (BA.1+R346K, also known as BA.1.1) and B.1.1.529.2 (BA.2), with the latter containing 8 unique spike alterations and lacking 13 spike alterations found in BA.1. Here we extended our studies to include antigenic characterization of these new sublineages. Polyclonal sera from patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial loss in neutralizing activity against both BA.1+R346K and BA.2, with drops comparable to that already reported for BA.1 (refs. <jats:sup>2,3,5,6</jats:sup>). These findings indicate that these three sublineages of Omicron are antigenically equidistant from the wild-type SARS-CoV-2 and thus similarly threaten the efficacies of current vaccines. BA.2 also exhibited marked resistance to 17 of 19 neutralizing monoclonal antibodies tested, including S309 (sotrovimab)<jats:sup>7</jats:sup>, which had retained appreciable activity against BA.1 and BA.1+R346K (refs. <jats:sup>2–4,6</jats:sup>). This finding shows that no authorized monoclonal antibody therapy could adequately cover all sublineages of the Omicron variant, except for the recently authorized LY-CoV1404 (bebtelovimab).</jats:p>
Palabras clave: Multidisciplinary.
Pp. 553-556
Activation of STING by targeting a pocket in the transmembrane domain
Defen Lu; Guijun Shang; Jie Li; Yong Lu; Xiao-chen Bai; Xuewu Zhang
Palabras clave: Multidisciplinary.
Pp. 557-562
CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours
Rebecca C. Larson; Michael C. Kann; Stefanie R. Bailey; Nicholas J. Haradhvala; Paula Montero Llopis; Amanda A. Bouffard; Irene Scarfó; Mark B. Leick; Korneel Grauwet; Trisha R. Berger; Kai Stewart; Praju Vikas Anekal; Max Jan; Julia Joung; Andrea Schmidts; Tamara Ouspenskaia; Travis Law; Aviv Regev; Gad Getz; Marcela V. Maus
Palabras clave: Multidisciplinary.
Pp. 563-570
Nonlinear control of transcription through enhancer–promoter interactions
Jessica Zuin; Gregory Roth; Yinxiu Zhan; Julie Cramard; Josef Redolfi; Ewa Piskadlo; Pia Mach; Mariya Kryzhanovska; Gergely Tihanyi; Hubertus Kohler; Mathias Eder; Christ Leemans; Bas van Steensel; Peter Meister; Sebastien Smallwood; Luca Giorgetti
<jats:title>Abstract</jats:title><jats:p>Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)<jats:sup>1–4</jats:sup>. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer–promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 571-577