Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature

Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com
No detectada desde jul. 2006 / hasta ago. 2012 Ovid

Información

Tipo de recurso:

revistas

ISSN impreso

0028-0836

ISSN electrónico

1476-4687

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Rare coding variants in ten genes confer substantial risk for schizophrenia

Tarjinder SinghORCID; Timothy Poterba; David Curtis; Huda Akil; Mariam Al Eissa; Jack D. Barchas; Nicholas Bass; Tim B. Bigdeli; Gerome Breen; Evelyn J. Bromet; Peter F. Buckley; William E. Bunney; Jonas Bybjerg-Grauholm; William F. Byerley; Sinéad B. Chapman; Wei J. Chen; Claire Churchhouse; Nicholas Craddock; Caroline M. Cusick; Lynn DeLisi; Sheila Dodge; Michael A. Escamilla; Saana Eskelinen; Ayman H. Fanous; Stephen V. Faraone; Alessia Fiorentino; Laurent Francioli; Stacey B. Gabriel; Diane Gage; Sarah A. Gagliano Taliun; Andrea Ganna; Giulio Genovese; David C. Glahn; Jakob Grove; Mei-Hua Hall; Eija Hämäläinen; Henrike O. Heyne; Matti Holi; David M. Hougaard; Daniel P. Howrigan; Hailiang Huang; Hai-Gwo Hwu; René S. Kahn; Hyun Min Kang; Konrad J. Karczewski; George Kirov; James A. Knowles; Francis S. Lee; Douglas S. Lehrer; Francesco Lescai; Dolores Malaspina; Stephen R. Marder; Steven A. McCarroll; Andrew M. McIntosh; Helena Medeiros; Lili Milani; Christopher P. Morley; Derek W. Morris; Preben Bo Mortensen; Richard M. Myers; Merete Nordentoft; Niamh L. O’Brien; Ana Maria Olivares; Dost Ongur; Willem H. Ouwehand; Duncan S. Palmer; Tiina Paunio; Digby Quested; Mark H. Rapaport; Elliott Rees; Brandi Rollins; F. Kyle Satterstrom; Alan Schatzberg; Edward Scolnick; Laura J. Scott; Sally I. Sharp; Pamela Sklar; Jordan W. Smoller; Janet L. Sobell; Matthew Solomonson; Eli A. Stahl; Christine R. Stevens; Jaana Suvisaari; Grace Tiao; Stanley J. Watson; Nicholas A. Watts; Douglas H. Blackwood; Anders D. Børglum; Bruce M. Cohen; Aiden P. Corvin; Tõnu Esko; Nelson B. Freimer; Stephen J. Glatt; Christina M. Hultman; Andrew McQuillin; Aarno Palotie; Carlos N. Pato; Michele T. Pato; Ann E. Pulver; David St. Clair; Ming T. Tsuang; Marquis P. Vawter; James T. Walters; Thomas M. Werge; Roel A. Ophoff; Patrick F. Sullivan; Michael J. Owen; Michael Boehnke; Michael C. O’Donovan; Benjamin M. NealeORCID; Mark J. DalyORCID

Palabras clave: Multidisciplinary.

Pp. 509-516

Somatic mutation rates scale with lifespan across mammals

Alex CaganORCID; Adrian Baez-Ortega; Natalia Brzozowska; Federico AbascalORCID; Tim H. H. CoorensORCID; Mathijs A. Sanders; Andrew R. J. LawsonORCID; Luke M. R. Harvey; Shriram BhosleORCID; David JonesORCID; Raul E. Alcantara; Timothy M. ButlerORCID; Yvette Hooks; Kirsty Roberts; Elizabeth Anderson; Sharna Lunn; Edmund Flach; Simon SpiroORCID; Inez Januszczak; Ethan Wrigglesworth; Hannah Jenkins; Tilly Dallas; Nic Masters; Matthew W. Perkins; Robert Deaville; Megan Druce; Ruzhica Bogeska; Michael D. MilsomORCID; Björn Neumann; Frank Gorman; Fernando Constantino-Casas; Laura Peachey; Diana BochynskaORCID; Ewan St. John SmithORCID; Moritz GerstungORCID; Peter J. CampbellORCID; Elizabeth P. MurchisonORCID; Michael R. StrattonORCID; Iñigo MartincorenaORCID

<jats:title>Abstract</jats:title><jats:p>The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans<jats:sup>1–7</jats:sup>. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans<jats:sup>8</jats:sup>, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined—including variation of around 30-fold in lifespan and around 40,000-fold in body mass—the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 517-524

Brain charts for the human lifespan

R. A. I. Bethlehem; J. Seidlitz; S. R. White; J. W. Vogel; K. M. Anderson; C. Adamson; S. Adler; G. S. Alexopoulos; E. Anagnostou; A. Areces-Gonzalez; D. E. Astle; B. Auyeung; M. Ayub; J. Bae; G. Ball; S. Baron-Cohen; R. Beare; S. A. Bedford; V. Benegal; F. Beyer; J. Blangero; M. Blesa Cábez; J. P. Boardman; M. Borzage; J. F. Bosch-Bayard; N. Bourke; V. D. Calhoun; M. M. Chakravarty; C. Chen; C. Chertavian; G. Chetelat; Y. S. Chong; J. H. Cole; A. Corvin; M. Costantino; E. Courchesne; F. Crivello; V. L. Cropley; J. Crosbie; N. Crossley; M. Delarue; R. Delorme; S. Desrivieres; G. A. Devenyi; M. A. Di Biase; R. Dolan; K. A. Donald; G. Donohoe; K. Dunlop; A. D. Edwards; J. T. Elison; C. T. Ellis; J. A. Elman; L. Eyler; D. A. Fair; E. Feczko; P. C. Fletcher; P. Fonagy; C. E. Franz; L. Galan-Garcia; A. Gholipour; J. Giedd; J. H. Gilmore; D. C. Glahn; I. M. Goodyer; P. E. Grant; N. A. Groenewold; F. M. Gunning; R. E. Gur; R. C. Gur; C. F. Hammill; O. Hansson; T. Hedden; A. Heinz; R. N. Henson; K. Heuer; J. Hoare; B. Holla; A. J. Holmes; R. Holt; H. Huang; K. Im; J. Ipser; C. R. Jack; A. P. Jackowski; T. Jia; K. A. Johnson; P. B. Jones; D. T. Jones; R. S. Kahn; H. Karlsson; L. Karlsson; R. Kawashima; E. A. Kelley; S. Kern; K. W. Kim; M. G. Kitzbichler; W. S. Kremen; F. Lalonde; B. Landeau; S. Lee; J. Lerch; J. D. Lewis; J. Li; W. Liao; C. Liston; M. V. Lombardo; J. Lv; C. Lynch; T. T. Mallard; M. Marcelis; R. D. Markello; S. R. Mathias; B. Mazoyer; P. McGuire; M. J. Meaney; A. Mechelli; N. Medic; B. Misic; S. E. Morgan; D. Mothersill; J. Nigg; M. Q. W. Ong; C. Ortinau; R. Ossenkoppele; M. Ouyang; L. Palaniyappan; L. Paly; P. M. Pan; C. Pantelis; M. M. Park; T. Paus; Z. Pausova; D. Paz-Linares; A. Pichet Binette; K. Pierce; X. Qian; J. Qiu; A. Qiu; A. Raznahan; T. Rittman; A. Rodrigue; C. K. Rollins; R. Romero-Garcia; L. Ronan; M. D. Rosenberg; D. H. Rowitch; G. A. Salum; T. D. Satterthwaite; H. L. Schaare; R. J. Schachar; A. P. Schultz; G. Schumann; M. Schöll; D. Sharp; R. T. Shinohara; I. Skoog; C. D. Smyser; R. A. Sperling; D. J. Stein; A. Stolicyn; J. Suckling; G. Sullivan; Y. Taki; B. Thyreau; R. Toro; N. Traut; K. A. Tsvetanov; N. B. Turk-Browne; J. J. Tuulari; C. Tzourio; É. Vachon-Presseau; M. J. Valdes-Sosa; P. A. Valdes-Sosa; S. L. Valk; T. van Amelsvoort; S. N. Vandekar; L. Vasung; L. W. Victoria; S. Villeneuve; A. Villringer; P. E. Vértes; K. Wagstyl; Y. S. Wang; S. K. Warfield; V. Warrier; E. Westman; M. L. Westwater; H. C. Whalley; A. V. Witte; N. Yang; B. Yeo; H. Yun; A. Zalesky; H. J. Zar; A. Zettergren; J. H. Zhou; H. Ziauddeen; A. Zugman; X. N. Zuo; C. Rowe; G. B. Frisoni; A. Pichet Binette; E. T. Bullmore; A. F. Alexander-Bloch; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

<jats:title>Abstract</jats:title><jats:p>Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight<jats:sup>1</jats:sup>. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.brainchart.io/">http://www.brainchart.io/</jats:ext-link>). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories<jats:sup>2</jats:sup> of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones<jats:sup>3</jats:sup>, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 525-533

Mapping human haematopoietic stem cells from haemogenic endothelium to birth

Vincenzo CalvaneseORCID; Sandra Capellera-Garcia; Feiyang MaORCID; Iman Fares; Simone Liebscher; Elizabeth S. Ng; Sophia Ekstrand; Júlia Aguadé-GorgorióORCID; Anastasia Vavilina; Diane Lefaudeux; Brian NadelORCID; Jacky Y. Li; Yanling Wang; Lydia K. Lee; Reza ArdehaliORCID; M. Luisa Iruela-ArispeORCID; Matteo Pellegrini; Ed G. Stanley; Andrew G. ElefantyORCID; Katja Schenke-LaylandORCID; Hanna K. A. MikkolaORCID

Palabras clave: Multidisciplinary.

Pp. 534-540

Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile

Xinyun CaoORCID; Hande Boyaci; James Chen; Yu Bao; Robert LandickORCID; Elizabeth A. CampbellORCID

Palabras clave: Multidisciplinary.

Pp. 541-545

Molecular basis of receptor binding and antibody neutralization of Omicron

Qin Hong; Wenyu Han; Jiawei Li; Shiqi XuORCID; Yifan WangORCID; Cong Xu; Zuyang Li; Yanxing WangORCID; Chao ZhangORCID; Zhong HuangORCID; Yao CongORCID

Palabras clave: Multidisciplinary.

Pp. 546-552

Antibody evasion properties of SARS-CoV-2 Omicron sublineages

Sho IketaniORCID; Lihong Liu; Yicheng GuoORCID; Liyuan Liu; Jasper F.-W. ChanORCID; Yiming Huang; Maple Wang; Yang LuoORCID; Jian Yu; Hin ChuORCID; Kenn K.-H. Chik; Terrence T.-T. Yuen; Michael T. Yin; Magdalena E. Sobieszczyk; Yaoxing HuangORCID; Kwok-Yung YuenORCID; Harris H. WangORCID; Zizhang Sheng; David D. HoORCID

<jats:title>Abstract</jats:title><jats:p>The identification of the Omicron (B.1.1.529.1 or BA.1) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Botswana in November 2021<jats:sup>1</jats:sup> immediately caused concern owing to the number of alterations in the spike glycoprotein that could lead to antibody evasion. We<jats:sup>2</jats:sup> and others<jats:sup>3–6</jats:sup> recently reported results confirming such a concern. Continuing surveillance of the evolution of Omicron has since revealed the rise in prevalence of two sublineages, BA.1 with an R346K alteration (BA.1+R346K, also known as BA.1.1) and B.1.1.529.2 (BA.2), with the latter containing 8 unique spike alterations and lacking 13 spike alterations found in BA.1. Here we extended our studies to include antigenic characterization of these new sublineages. Polyclonal sera from patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial loss in neutralizing activity against both BA.1+R346K and BA.2, with drops comparable to that already reported for BA.1 (refs. <jats:sup>2,3,5,6</jats:sup>). These findings indicate that these three sublineages of Omicron are antigenically equidistant from the wild-type SARS-CoV-2 and thus similarly threaten the efficacies of current vaccines. BA.2 also exhibited marked resistance to 17 of 19 neutralizing monoclonal antibodies tested, including S309 (sotrovimab)<jats:sup>7</jats:sup>, which had retained appreciable activity against BA.1 and BA.1+R346K (refs. <jats:sup>2–4,6</jats:sup>). This finding shows that no authorized monoclonal antibody therapy could adequately cover all sublineages of the Omicron variant, except for the recently authorized LY-CoV1404 (bebtelovimab).</jats:p>

Palabras clave: Multidisciplinary.

Pp. 553-556

Activation of STING by targeting a pocket in the transmembrane domain

Defen Lu; Guijun Shang; Jie LiORCID; Yong LuORCID; Xiao-chen BaiORCID; Xuewu ZhangORCID

Palabras clave: Multidisciplinary.

Pp. 557-562

CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours

Rebecca C. Larson; Michael C. Kann; Stefanie R. BaileyORCID; Nicholas J. HaradhvalaORCID; Paula Montero LlopisORCID; Amanda A. Bouffard; Irene Scarfó; Mark B. Leick; Korneel Grauwet; Trisha R. Berger; Kai Stewart; Praju Vikas Anekal; Max Jan; Julia Joung; Andrea SchmidtsORCID; Tamara OuspenskaiaORCID; Travis LawORCID; Aviv RegevORCID; Gad Getz; Marcela V. MausORCID

Palabras clave: Multidisciplinary.

Pp. 563-570

Nonlinear control of transcription through enhancer–promoter interactions

Jessica Zuin; Gregory RothORCID; Yinxiu ZhanORCID; Julie CramardORCID; Josef Redolfi; Ewa Piskadlo; Pia Mach; Mariya Kryzhanovska; Gergely TihanyiORCID; Hubertus Kohler; Mathias Eder; Christ Leemans; Bas van SteenselORCID; Peter MeisterORCID; Sebastien Smallwood; Luca GiorgettiORCID

<jats:title>Abstract</jats:title><jats:p>Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)<jats:sup>1–4</jats:sup>. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer–promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 571-577