Catálogo de publicaciones - revistas
Nature
Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com | ||
No detectada | desde jul. 2006 / hasta ago. 2012 | Ovid |
Información
Tipo de recurso:
revistas
ISSN impreso
0028-0836
ISSN electrónico
1476-4687
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1869-
Tabla de contenidos
Democratizing the mapping of gene mutations to protein biophysics
Debora S. Marks; Stephen W. Michnick
Palabras clave: Multidisciplinary.
Pp. 47-48
UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b
Joshua D. Lothringer; David K. Sing; Zafar Rustamkulov; Hannah R. Wakeford; Kevin B. Stevenson; Nikolay Nikolov; Panayotis Lavvas; Jessica J. Spake; Autumn T. Winch
Palabras clave: Multidisciplinary.
Pp. 49-52
Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE
; D. Q. Adams; C. Alduino; K. Alfonso; F. T. Avignone; O. Azzolini; G. Bari; F. Bellini; G. Benato; M. Beretta; M. Biassoni; A. Branca; C. Brofferio; C. Bucci; J. Camilleri; A. Caminata; A. Campani; L. Canonica; X. G. Cao; S. Capelli; L. Cappelli; L. Cardani; P. Carniti; N. Casali; E. Celi; D. Chiesa; M. Clemenza; S. Copello; O. Cremonesi; R. J. Creswick; A. D’Addabbo; I. Dafinei; S. Dell’Oro; S. Di Domizio; V. Dompè; D. Q. Fang; G. Fantini; M. Faverzani; E. Ferri; F. Ferroni; E. Fiorini; M. A. Franceschi; S. J. Freedman; S. H. Fu; B. K. Fujikawa; A. Giachero; L. Gironi; A. Giuliani; P. Gorla; C. Gotti; T. D. Gutierrez; K. Han; E. V. Hansen; K. M. Heeger; R. G. Huang; H. Z. Huang; J. Johnston; G. Keppel; Yu. G. Kolomensky; C. Ligi; R. Liu; L. Ma; Y. G. Ma; L. Marini; R. H. Maruyama; D. Mayer; Y. Mei; N. Moggi; S. Morganti; T. Napolitano; M. Nastasi; J. Nikkel; C. Nones; E. B. Norman; A. Nucciotti; I. Nutini; T. O’Donnell; J. L. Ouellet; S. Pagan; C. E. Pagliarone; L. Pagnanini; M. Pallavicini; L. Pattavina; M. Pavan; G. Pessina; V. Pettinacci; C. Pira; S. Pirro; S. Pozzi; E. Previtali; A. Puiu; C. Rosenfeld; C. Rusconi; M. Sakai; S. Sangiorgio; B. Schmidt; N. D. Scielzo; V. Sharma; V. Singh; M. Sisti; D. Speller; P. T. Surukuchi; L. Taffarello; F. Terranova; C. Tomei; K. J. Vetter; M. Vignati; S. L. Wagaarachchi; B. S. Wang; B. Welliver; J. Wilson; K. Wilson; L. A. Winslow; S. Zimmermann; S. Zucchelli
<jats:title>Abstract</jats:title><jats:p>The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937<jats:sup>1</jats:sup>. Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis<jats:sup>2</jats:sup>, the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0<jats:italic>νββ</jats:italic>) decay. Here we show results from the search for 0<jats:italic>νββ</jats:italic> decay of <jats:sup>130</jats:sup>Te, using the latest advanced cryogenic calorimeters with the CUORE experiment<jats:sup>3</jats:sup>. CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0<jats:italic>νββ</jats:italic> decay and set a lower bound of the process half-life as 2.2 × 10<jats:sup>25</jats:sup> years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 53-58
Charge-density-wave-driven electronic nematicity in a kagome superconductor
Linpeng Nie; Kuanglv Sun; Wanru Ma; Dianwu Song; Lixuan Zheng; Zuowei Liang; Ping Wu; Fanghang Yu; Jian Li; Min Shan; Dan Zhao; Shunjiao Li; Baolei Kang; Zhimian Wu; Yanbing Zhou; Kai Liu; Ziji Xiang; Jianjun Ying; Zhenyu Wang; Tao Wu; Xianhui Chen
Palabras clave: Multidisciplinary.
Pp. 59-64
Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors
Suraj S. Cheema; Nirmaan Shanker; Li-Chen Wang; Cheng-Hsiang Hsu; Shang-Lin Hsu; Yu-Hung Liao; Matthew San Jose; Jorge Gomez; Wriddhi Chakraborty; Wenshen Li; Jong-Ho Bae; Steve K. Volkman; Daewoong Kwon; Yoonsoo Rho; Gianni Pinelli; Ravi Rastogi; Dominick Pipitone; Corey Stull; Matthew Cook; Brian Tyrrell; Vladimir A. Stoica; Zhan Zhang; John W. Freeland; Christopher J. Tassone; Apurva Mehta; Ghazal Saheli; David Thompson; Dong Ik Suh; Won-Tae Koo; Kab-Jin Nam; Dong Jin Jung; Woo-Bin Song; Chung-Hsun Lin; Seunggeol Nam; Jinseong Heo; Narendra Parihar; Costas P. Grigoropoulos; Padraic Shafer; Patrick Fay; Ramamoorthy Ramesh; Souvik Mahapatra; Jim Ciston; Suman Datta; Mohamed Mohamed; Chenming Hu; Sayeef Salahuddin
Palabras clave: Multidisciplinary.
Pp. 65-71
Reconstructed covalent organic frameworks
Weiwei Zhang; Linjiang Chen; Sheng Dai; Chengxi Zhao; Cheng Ma; Lei Wei; Minghui Zhu; Samantha Y. Chong; Haofan Yang; Lunjie Liu; Yang Bai; Miaojie Yu; Yongjie Xu; Xiao-Wei Zhu; Qiang Zhu; Shuhao An; Reiner Sebastian Sprick; Marc A. Little; Xiaofeng Wu; Shan Jiang; Yongzhen Wu; Yue-Biao Zhang; He Tian; Wei-Hong Zhu; Andrew I. Cooper
<jats:title>Abstract</jats:title><jats:p>Covalent organic frameworks (COFs) are distinguished from other organic polymers by their crystallinity<jats:sup>1–3</jats:sup>, but it remains challenging to obtain robust, highly crystalline COFs because the framework-forming reactions are poorly reversible<jats:sup>4,5</jats:sup>. More reversible chemistry can improve crystallinity<jats:sup>6–9</jats:sup>, but this typically yields COFs with poor physicochemical stability and limited application scope<jats:sup>5</jats:sup>. Here we report a general and scalable protocol to prepare robust, highly crystalline imine COFs, based on an unexpected framework reconstruction. In contrast to standard approaches in which monomers are initially randomly aligned, our method involves the pre-organization of monomers using a reversible and removable covalent tether, followed by confined polymerization. This reconstruction route produces reconstructed COFs with greatly enhanced crystallinity and much higher porosity by means of a simple vacuum-free synthetic procedure. The increased crystallinity in the reconstructed COFs improves charge carrier transport, leading to sacrificial photocatalytic hydrogen evolution rates of up to 27.98 mmol h<jats:sup>−1</jats:sup> g<jats:sup>−1</jats:sup>. This nanoconfinement-assisted reconstruction strategy is a step towards programming function in organic materials through atomistic structural control.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 72-79
Autonomous fuelled directional rotation about a covalent single bond
Stefan Borsley; Elisabeth Kreidt; David A. Leigh; Benjamin M. W. Roberts
Palabras clave: Multidisciplinary.
Pp. 80-85
Multifunctional biocatalyst for conjugate reduction and reductive amination
Thomas W. Thorpe; James R. Marshall; Vanessa Harawa; Rebecca E. Ruscoe; Anibal Cuetos; James D. Finnigan; Antonio Angelastro; Rachel S. Heath; Fabio Parmeggiani; Simon J. Charnock; Roger M. Howard; Rajesh Kumar; David S. B. Daniels; Gideon Grogan; Nicholas J. Turner
Palabras clave: Multidisciplinary.
Pp. 86-91
Automated iterative Csp3–C bond formation
Daniel J. Blair; Sriyankari Chitti; Melanie Trobe; David M. Kostyra; Hannah M. S. Haley; Richard L. Hansen; Steve G. Ballmer; Toby J. Woods; Wesley Wang; Vikram Mubayi; Michael J. Schmidt; Robert W. Pipal; Greg. F. Morehouse; Andrea M. E. Palazzolo Ray; Danielle L. Gray; Adrian L. Gill; Martin D. Burke
Palabras clave: Multidisciplinary.
Pp. 92-97