Catálogo de publicaciones - revistas
Nature
Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com | ||
No detectada | desde jul. 2006 / hasta ago. 2012 | Ovid |
Información
Tipo de recurso:
revistas
ISSN impreso
0028-0836
ISSN electrónico
1476-4687
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1869-
Tabla de contenidos
Electrolyte design for Li-ion batteries under extreme operating conditions
Jijian Xu; Jiaxun Zhang; Travis P. Pollard; Qingdong Li; Sha Tan; Singyuk Hou; Hongli Wan; Fu Chen; Huixin He; Enyuan Hu; Kang Xu; Xiao-Qing Yang; Oleg Borodin; Chunsheng Wang
Palabras clave: Multidisciplinary.
Pp. No disponible
Dissecting cell identity via network inference and in silico gene perturbation
Kenji Kamimoto; Blerta Stringa; Christy M. Hoffmann; Kunal Jindal; Lilianna Solnica-Krezel; Samantha A. Morris
<jats:title>Abstract</jats:title><jats:p>Cell identity is governed by the complex regulation of gene expression, represented as gene-regulatory networks<jats:sup>1</jats:sup>. Here we use gene-regulatory networks inferred from single-cell multi-omics data to perform in silico transcription factor perturbations, simulating the consequent changes in cell identity using only unperturbed wild-type data. We apply this machine-learning-based approach, CellOracle, to well-established paradigms—mouse and human haematopoiesis, and zebrafish embryogenesis—and we correctly model reported changes in phenotype that occur as a result of transcription factor perturbation. Through systematic in silico transcription factor perturbation in the developing zebrafish, we simulate and experimentally validate a previously unreported phenotype that results from the loss of <jats:italic>noto</jats:italic>, an established notochord regulator. Furthermore, we identify an axial mesoderm regulator, <jats:italic>lhx1a</jats:italic>. Together, these results show that CellOracle can be used to analyse the regulation of cell identity by transcription factors, and can provide mechanistic insights into development and differentiation.</jats:p>
Palabras clave: Multidisciplinary.
Pp. No disponible
Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
Martin A. Mensah; Henri Niskanen; Alexandre P. Magalhaes; Shaon Basu; Martin Kircher; Henrike L. Sczakiel; Alisa M. V. Reiter; Jonas Elsner; Peter Meinecke; Saskia Biskup; Brian H. Y. Chung; Gregor Dombrowsky; Christel Eckmann-Scholz; Marc Phillip Hitz; Alexander Hoischen; Paul-Martin Holterhus; Wiebke Hülsemann; Kimia Kahrizi; Vera M. Kalscheuer; Anita Kan; Mandy Krumbiegel; Ingo Kurth; Jonas Leubner; Ann Carolin Longardt; Jörg D. Moritz; Hossein Najmabadi; Karolina Skipalova; Lot Snijders Blok; Andreas Tzschach; Eberhard Wiedersberg; Martin Zenker; Carla Garcia-Cabau; René Buschow; Xavier Salvatella; Matthew L. Kraushar; Stefan Mundlos; Almuth Caliebe; Malte Spielmann; Denise Horn; Denes Hnisz
<jats:title>Abstract</jats:title><jats:p>Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions<jats:sup>1–3</jats:sup>. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus<jats:sup>4,5</jats:sup>. This suggests that mutations in disordered proteins may alter condensate properties and function<jats:sup>6–8</jats:sup>. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in <jats:italic>HMGB1</jats:italic> that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.</jats:p>
Palabras clave: Multidisciplinary.
Pp. No disponible
Designer silicon nanowires produce hydrogen from water and light
Palabras clave: Multidisciplinary.
Pp. No disponible
This mysterious space rock shouldn’t have a ring — but it does
Benjamin Thompson; Nick Petrić Howe
Palabras clave: Multidisciplinary.
Pp. No disponible
The cellular coding of temperature in the mammalian cortex
M. Vestergaard; M. Carta; G. Güney; J. F. A. Poulet
<jats:title>Abstract</jats:title><jats:p>Temperature is a fundamental sensory modality separate from touch, with dedicated receptor channels and primary afferent neurons for cool and warm<jats:sup>1–3</jats:sup>. Unlike for other modalities, however, the cortical encoding of temperature remains unknown, with very few cortical neurons reported that respond to non-painful temperature, and the presence of a ‘thermal cortex’ is debated<jats:sup>4–8</jats:sup>. Here, using widefield and two-photon calcium imaging in the mouse forepaw system, we identify cortical neurons that respond to cooling and/or warming with distinct spatial and temporal response properties. We observed a representation of cool, but not warm, in the primary somatosensory cortex, but cool and warm in the posterior insular cortex (pIC). The representation of thermal information in pIC is robust and somatotopically arranged, and reversible manipulations show a profound impact on thermal perception. Despite being positioned along the same one-dimensional sensory axis, the encoding of cool and that of warm are distinct, both in highly and broadly tuned neurons. Together, our results show that pIC contains the primary cortical representation of skin temperature and may help explain how the thermal system generates sensations of cool and warm.</jats:p>
Palabras clave: Multidisciplinary.
Pp. No disponible
Ancient stone tools suggest early humans dined on hippo
Freda Kreier
Palabras clave: Multidisciplinary.
Pp. No disponible
How a tiny genetic change inflicts old age on young kids
Palabras clave: Multidisciplinary.
Pp. No disponible
Sea life bounced back fast after the ‘mother of mass extinctions’
Dyani Lewis
Palabras clave: Multidisciplinary.
Pp. No disponible