Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature

Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com
No detectada desde jul. 2006 / hasta ago. 2012 Ovid

Información

Tipo de recurso:

revistas

ISSN impreso

0028-0836

ISSN electrónico

1476-4687

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Electrolyte design for Li-ion batteries under extreme operating conditions

Jijian XuORCID; Jiaxun Zhang; Travis P. PollardORCID; Qingdong Li; Sha TanORCID; Singyuk Hou; Hongli Wan; Fu Chen; Huixin He; Enyuan HuORCID; Kang XuORCID; Xiao-Qing YangORCID; Oleg BorodinORCID; Chunsheng WangORCID

Palabras clave: Multidisciplinary.

Pp. No disponible

Dissecting cell identity via network inference and in silico gene perturbation

Kenji KamimotoORCID; Blerta Stringa; Christy M. Hoffmann; Kunal JindalORCID; Lilianna Solnica-KrezelORCID; Samantha A. MorrisORCID

<jats:title>Abstract</jats:title><jats:p>Cell identity is governed by the complex regulation of gene expression, represented as gene-regulatory networks<jats:sup>1</jats:sup>. Here we use gene-regulatory networks inferred from single-cell multi-omics data to perform in silico transcription factor perturbations, simulating the consequent changes in cell identity using only unperturbed wild-type data. We apply this machine-learning-based approach, CellOracle, to well-established paradigms—mouse and human haematopoiesis, and zebrafish embryogenesis—and we correctly model reported changes in phenotype that occur as a result of transcription factor perturbation. Through systematic in silico transcription factor perturbation in the developing zebrafish, we simulate and experimentally validate a previously unreported phenotype that results from the loss of <jats:italic>noto</jats:italic>, an established notochord regulator. Furthermore, we identify an axial mesoderm regulator, <jats:italic>lhx1a</jats:italic>. Together, these results show that CellOracle can be used to analyse the regulation of cell identity by transcription factors, and can provide mechanistic insights into development and differentiation.</jats:p>

Palabras clave: Multidisciplinary.

Pp. No disponible

Aberrant phase separation and nucleolar dysfunction in rare genetic diseases

Martin A. MensahORCID; Henri NiskanenORCID; Alexandre P. MagalhaesORCID; Shaon BasuORCID; Martin KircherORCID; Henrike L. Sczakiel; Alisa M. V. ReiterORCID; Jonas ElsnerORCID; Peter Meinecke; Saskia Biskup; Brian H. Y. Chung; Gregor Dombrowsky; Christel Eckmann-Scholz; Marc Phillip HitzORCID; Alexander Hoischen; Paul-Martin Holterhus; Wiebke Hülsemann; Kimia Kahrizi; Vera M. KalscheuerORCID; Anita Kan; Mandy Krumbiegel; Ingo KurthORCID; Jonas Leubner; Ann Carolin Longardt; Jörg D. Moritz; Hossein Najmabadi; Karolina Skipalova; Lot Snijders Blok; Andreas TzschachORCID; Eberhard Wiedersberg; Martin ZenkerORCID; Carla Garcia-CabauORCID; René BuschowORCID; Xavier SalvatellaORCID; Matthew L. KrausharORCID; Stefan MundlosORCID; Almuth CaliebeORCID; Malte SpielmannORCID; Denise HornORCID; Denes HniszORCID

<jats:title>Abstract</jats:title><jats:p>Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions<jats:sup>1–3</jats:sup>. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus<jats:sup>4,5</jats:sup>. This suggests that mutations in disordered proteins may alter condensate properties and function<jats:sup>6–8</jats:sup>. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in <jats:italic>HMGB1</jats:italic> that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.</jats:p>

Palabras clave: Multidisciplinary.

Pp. No disponible

Designer silicon nanowires produce hydrogen from water and light

Palabras clave: Multidisciplinary.

Pp. No disponible

This mysterious space rock shouldn’t have a ring — but it does

Benjamin Thompson; Nick Petrić Howe

Palabras clave: Multidisciplinary.

Pp. No disponible

The cellular coding of temperature in the mammalian cortex

M. VestergaardORCID; M. Carta; G. GüneyORCID; J. F. A. PouletORCID

<jats:title>Abstract</jats:title><jats:p>Temperature is a fundamental sensory modality separate from touch, with dedicated receptor channels and primary afferent neurons for cool and warm<jats:sup>1–3</jats:sup>. Unlike for other modalities, however, the cortical encoding of temperature remains unknown, with very few cortical neurons reported that respond to non-painful temperature, and the presence of a ‘thermal cortex’ is debated<jats:sup>4–8</jats:sup>. Here, using widefield and two-photon calcium imaging in the mouse forepaw system, we identify cortical neurons that respond to cooling and/or warming with distinct spatial and temporal response properties. We observed a representation of cool, but not warm, in the primary somatosensory cortex, but cool and warm in the posterior insular cortex (pIC). The representation of thermal information in pIC is robust and somatotopically arranged, and reversible manipulations show a profound impact on thermal perception. Despite being positioned along the same one-dimensional sensory axis, the encoding of cool and that of warm are distinct, both in highly and broadly tuned neurons. Together, our results show that pIC contains the primary cortical representation of skin temperature and may help explain how the thermal system generates sensations of cool and warm.</jats:p>

Palabras clave: Multidisciplinary.

Pp. No disponible

Ancient stone tools suggest early humans dined on hippo

Freda Kreier

Palabras clave: Multidisciplinary.

Pp. No disponible

How a tiny genetic change inflicts old age on young kids

Palabras clave: Multidisciplinary.

Pp. No disponible

Sea life bounced back fast after the ‘mother of mass extinctions’

Dyani Lewis

Palabras clave: Multidisciplinary.

Pp. No disponible

Reply to: Concerns about data linking delta land gain to human action

J. H. NienhuisORCID; A. D. AshtonORCID; D. A. EdmondsORCID; A. J. F. Hoitink; A. J. KettnerORCID; J. C. Rowland; T. E. TörnqvistORCID

Palabras clave: Multidisciplinary.

Pp. E26-E28