Catálogo de publicaciones - revistas
Nature
Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com | ||
No detectada | desde jul. 2006 / hasta ago. 2012 | Ovid |
Información
Tipo de recurso:
revistas
ISSN impreso
0028-0836
ISSN electrónico
1476-4687
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1869-
Tabla de contenidos
Spatial multi-omic map of human myocardial infarction
Christoph Kuppe; Ricardo O. Ramirez Flores; Zhijian Li; Sikander Hayat; Rebecca T. Levinson; Xian Liao; Monica T. Hannani; Jovan Tanevski; Florian Wünnemann; James S. Nagai; Maurice Halder; David Schumacher; Sylvia Menzel; Gideon Schäfer; Konrad Hoeft; Mingbo Cheng; Susanne Ziegler; Xiaoting Zhang; Fabian Peisker; Nadine Kaesler; Turgay Saritas; Yaoxian Xu; Astrid Kassner; Jan Gummert; Michiel Morshuis; Junedh Amrute; Rogier J. A. Veltrop; Peter Boor; Karin Klingel; Linda W. Van Laake; Aryan Vink; Remco M. Hoogenboezem; Eric M. J. Bindels; Leon Schurgers; Susanne Sattler; Denis Schapiro; Rebekka K. Schneider; Kory Lavine; Hendrik Milting; Ivan G. Costa; Julio Saez-Rodriguez; Rafael Kramann
Palabras clave: Multidisciplinary.
Pp. 766-777
A non-canonical vitamin K cycle is a potent ferroptosis suppressor
Eikan Mishima; Junya Ito; Zijun Wu; Toshitaka Nakamura; Adam Wahida; Sebastian Doll; Wulf Tonnus; Palina Nepachalovich; Elke Eggenhofer; Maceler Aldrovandi; Bernhard Henkelmann; Ken-ichi Yamada; Jonas Wanninger; Omkar Zilka; Emiko Sato; Regina Feederle; Daniela Hass; Adriano Maida; André Santos Dias Mourão; Andreas Linkermann; Edward K. Geissler; Kiyotaka Nakagawa; Takaaki Abe; Maria Fedorova; Bettina Proneth; Derek A. Pratt; Marcus Conrad
<jats:title>Abstract</jats:title><jats:p>Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation<jats:sup>1</jats:sup>, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers<jats:sup>2</jats:sup>. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K—a group of naphthoquinones that includes menaquinone and phylloquinone<jats:sup>3</jats:sup>—confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-4<jats:sup>4,5</jats:sup>, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle<jats:sup>6</jats:sup>. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 778-783
Cell–matrix interface regulates dormancy in human colon cancer stem cells
Yuki Ohta; Masayuki Fujii; Sirirat Takahashi; Ai Takano; Kosaku Nanki; Mami Matano; Hikaru Hanyu; Megumu Saito; Mariko Shimokawa; Shingo Nishikori; Yoshiko Hatano; Ryota Ishii; Kazuaki Sawada; Akihito Machinaga; Wataru Ikeda; Takeshi Imamura; Toshiro Sato
Palabras clave: Multidisciplinary.
Pp. 784-794
Ordered and deterministic cancer genome evolution after p53 loss
Timour Baslan; John P. Morris; Zhen Zhao; Jose Reyes; Yu-Jui Ho; Kaloyan M. Tsanov; Jonathan Bermeo; Sha Tian; Sean Zhang; Gokce Askan; Aslihan Yavas; Nicolas Lecomte; Amanda Erakky; Anna M. Varghese; Amy Zhang; Jude Kendall; Elena Ghiban; Lubomir Chorbadjiev; Jie Wu; Nevenka Dimitrova; Kalyani Chadalavada; Gouri J. Nanjangud; Chaitanya Bandlamudi; Yixiao Gong; Mark T. A. Donoghue; Nicholas D. Socci; Alex Krasnitz; Faiyaz Notta; Steve D. Leach; Christine A. Iacobuzio-Donahue; Scott W. Lowe
<jats:title>Abstract</jats:title><jats:p>Although p53 inactivation promotes genomic instability<jats:sup>1</jats:sup> and presents a route to malignancy for more than half of all human cancers<jats:sup>2,3</jats:sup>, the patterns through which heterogenous <jats:italic>TP53</jats:italic> (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases—<jats:italic>Trp53</jats:italic> (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications—each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53—the ‘guardian of the genome’—is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of <jats:italic>TP53-</jats:italic>mutant tumours.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 795-802
Cryo-EM structure of an active bacterial TIR–STING filament complex
Benjamin R. Morehouse; Matthew C. J. Yip; Alexander F. A. Keszei; Nora K. McNamara-Bordewick; Sichen Shao; Philip J. Kranzusch
<jats:title>Abstract</jats:title><jats:p>Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly conserved in both innate immunity in animals and phage defence in prokaryotes<jats:sup>1–4</jats:sup>. Activation of STING requires its assembly into an oligomeric filament structure through binding of a cyclic dinucleotide<jats:sup>4–13</jats:sup>, but the molecular basis of STING filament assembly and extension remains unknown. Here we use cryogenic electron microscopy to determine the structure of the active Toll/interleukin-1 receptor (TIR)–STING filament complex from a <jats:italic>Sphingobacterium faecium</jats:italic> cyclic-oligonucleotide-based antiphage signalling system (CBASS) defence operon. Bacterial TIR–STING filament formation is driven by STING interfaces that become exposed on high-affinity recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric STING units stack laterally head-to-head through surface interfaces, which are also essential for human STING tetramer formation and downstream immune signalling in mammals<jats:sup>5</jats:sup>. The active bacterial TIR–STING structure reveals further cross-filament contacts that brace the assembly and coordinate packing of the associated TIR NADase effector domains at the base of the filament to drive NAD<jats:sup>+</jats:sup> hydrolysis. STING interface and cross-filament contacts are essential for cell growth arrest in vivo and reveal a stepwise mechanism of activation whereby STING filament assembly is required for subsequent effector activation. Our results define the structural basis of STING filament formation in prokaryotic antiviral signalling.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 803-807
Cyclic nucleotide-induced helical structure activates a TIR immune effector
Gaëlle Hogrel; Abbie Guild; Shirley Graham; Hannah Rickman; Sabine Grüschow; Quentin Bertrand; Laura Spagnolo; Malcolm F. White
Palabras clave: Multidisciplinary.
Pp. 808-812
Structure of Tetrahymena telomerase-bound CST with polymerase α-primase
Yao He; He Song; Henry Chan; Baocheng Liu; Yaqiang Wang; Lukas Sušac; Z. Hong Zhou; Juli Feigon
Palabras clave: Multidisciplinary.
Pp. 813-818
Reconstitution of a telomeric replicon organized by CST
Arthur J. Zaug; Karen J. Goodrich; Jessica J. Song; Ashley E. Sullivan; Thomas R. Cech
<jats:title>Abstract</jats:title><jats:p>Telomeres, the natural ends of linear chromosomes, comprise repeat-sequence DNA and associated proteins<jats:sup>1</jats:sup>. Replication of telomeres allows continued proliferation of human stem cells and immortality of cancer cells<jats:sup>2</jats:sup>. This replication requires telomerase<jats:sup>3</jats:sup> extension of the single-stranded DNA (ssDNA) of the telomeric G-strand ((TTAGGG)<jats:sub><jats:italic>n</jats:italic></jats:sub>); the synthesis of the complementary C-strand ((CCCTAA)<jats:sub><jats:italic>n</jats:italic></jats:sub>) is much less well characterized. The CST (CTC1–STN1–TEN1) protein complex, a DNA polymerase α-primase accessory factor<jats:sup>4,5</jats:sup>, is known to be required for telomere replication in vivo<jats:sup>6–9</jats:sup>, and the molecular analysis presented here reveals key features of its mechanism. We find that human CST uses its ssDNA-binding activity to specify the origins for telomeric C-strand synthesis by bound Polα-primase. CST-organized DNA polymerization can copy a telomeric DNA template that folds into G-quadruplex structures, but the challenges presented by this template probably contribute to telomere replication problems observed in vivo. Combining telomerase, a short telomeric ssDNA primer and CST–Polα–primase gives complete telomeric DNA replication, resulting in the same sort of ssDNA 3′ overhang found naturally on human telomeres. We conclude that the CST complex not only terminates telomerase extension<jats:sup>10,11</jats:sup> and recruits Polα–primase to telomeric ssDNA<jats:sup>4,12,13</jats:sup> but also orchestrates C-strand synthesis. Because replication of the telomere has features distinct from replication of the rest of the genome, targeting telomere-replication components including CST holds promise for cancer therapeutics.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 819-825
Structures of the human CST-Polα–primase complex bound to telomere templates
Qixiang He; Xiuhua Lin; Bianca L. Chavez; Sourav Agrawal; Benjamin L. Lusk; Ci Ji Lim
Palabras clave: Multidisciplinary.
Pp. 826-832
Lost funding, unwelcome moves: UK researchers speak out on ERC ‘disaster’
Chris Woolston
Palabras clave: Multidisciplinary.
Pp. 833-835