Catálogo de publicaciones - revistas
Nature
Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com | ||
No detectada | desde jul. 2006 / hasta ago. 2012 | Ovid |
Información
Tipo de recurso:
revistas
ISSN impreso
0028-0836
ISSN electrónico
1476-4687
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1869-
Tabla de contenidos
Strongly correlated electron–photon systems
Jacqueline Bloch; Andrea Cavalleri; Victor Galitski; Mohammad Hafezi; Angel Rubio
Palabras clave: Multidisciplinary.
Pp. 41-48
The road to fully programmable protein catalysis
Sarah L. Lovelock; Rebecca Crawshaw; Sophie Basler; Colin Levy; David Baker; Donald Hilvert; Anthony P. Green
Palabras clave: Multidisciplinary.
Pp. 49-58
Resolving the H i in damped Lyman α systems that power star formation
Rongmon Bordoloi; John M. O’Meara; Keren Sharon; Jane R. Rigby; Jeff Cooke; Ahmed Shaban; Mateusz Matuszewski; Luca Rizzi; Greg Doppmann; D. Christopher Martin; Anna M. Moore; Patrick Morrissey; James D. Neill
Palabras clave: Multidisciplinary.
Pp. 59-63
Probing CP symmetry and weak phases with entangled double-strange baryons
; M. Ablikim; M. N. Achasov; P. Adlarson; S. Ahmed; M. Albrecht; R. Aliberti; A. Amoroso; M. R. An; Q. An; X. H. Bai; Y. Bai; O. Bakina; R. Baldini Ferroli; I. Balossino; Y. Ban; K. Begzsuren; N. Berger; M. Bertani; D. Bettoni; F. Bianchi; J. Biernat; J. Bloms; A. Bortone; I. Boyko; R. A. Briere; H. Cai; X. Cai; A. Calcaterra; G. F. Cao; N. Cao; S. A. Cetin; J. F. Chang; W. L. Chang; G. Chelkov; D. Y. Chen; G. Chen; H. S. Chen; M. L. Chen; S. J. Chen; X. R. Chen; Y. B. Chen; Z. J. Chen; W. S. Cheng; G. Cibinetto; F. Cossio; X. F. Cui; H. L. Dai; X. C. Dai; A. Dbeyssi; R. E. de Boer; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; F. De Mori; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; X. Dong; S. X. Du; Y. L. Fan; J. Fang; S. S. Fang; Y. Fang; R. Farinelli; L. Fava; F. Feldbauer; G. Felici; C. Q. Feng; J. H. Feng; M. Fritsch; C. D. Fu; Y. Gao; Y. Gao; Y. Gao; Y. G. Gao; I. Garzia; P. T. Ge; C. Geng; E. M. Gersabeck; A. Gilman; K. Goetzen; L. Gong; W. X. Gong; W. Gradl; M. Greco; L. M. Gu; M. H. Gu; S. Gu; Y. T. Gu; C. Y. Guan; A. Q. Guo; L. B. Guo; R. P. Guo; Y. P. Guo; A. Guskov; T. T. Han; W. Y. Han; J. Hansson; X. Q. Hao; F. A. Harris; N. Hüsken; K. L. He; F. H. Heinsius; C. H. Heinz; T. Held; Y. K. Heng; C. Herold; M. Himmelreich; T. Holtmann; Y. R. Hou; Z. L. Hou; H. M. Hu; J. F. Hu; T. Hu; Y. Hu; G. S. Huang; L. Q. Huang; X. T. Huang; Y. P. Huang; Z. Huang; T. Hussain; W. Ikegami Andersson; W. Imoehl; M. Irshad; S. Jaeger; S. Janchiv; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; Y. Y. Ji; H. B. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; S. Jin; Y. Jin; T. Johansson; N. Kalantar-Nayestanaki; X. S. Kang; R. Kappert; M. Kavatsyuk; B. C. Ke; I. K. Keshk; A. Khoukaz; P. Kiese; R. Kiuchi; R. Kliemt; L. Koch; O. B. Kolcu; B. Kopf; M. Kuemmel; M. Kuessner; A. Kupsc; M. G. Kurth; W. Kühn; J. J. Lane; J. S. Lange; P. Larin; A. Lavania; L. Lavezzi; Z. H. Lei; H. Leithoff; M. Lellmann; T. Lenz; C. Li; C. H. Li; Cheng Li; D. M. Li; F. Li; G. Li; H. Li; H. Li; H. B. Li; H. J. Li; H. J. Li; J. L. Li; J. Q. Li; J. S. Li; Ke Li; L. K. Li; Lei Li; P. R. Li; S. Y. Li; W. D. Li; W. G. Li; X. H. Li; X. L. Li; Xiaoyu Li; Z. Y. Li; H. Liang; H. Liang; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; L. Z. Liao; J. Libby; C. X. Lin; B. J. Liu; C. X. Liu; D. Liu; F. H. Liu; Fang Liu; Feng Liu; H. B. Liu; H. M. Liu; Huanhuan Liu; Huihui Liu; J. B. Liu; J. L. Liu; J. Y. Liu; K. Liu; K. Y. Liu; Ke Liu; L. Liu; M. H. Liu; P. L. Liu; Q. Liu; Q. Liu; S. B. Liu; Shuai Liu; T. Liu; W. M. Liu; X. Liu; Y. Liu; Y. B. Liu; Z. A. Liu; Z. Q. Liu; X. C. Lou; F. X. Lu; F. X. Lu; H. J. Lu; J. D. Lu; J. G. Lu; X. L. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; P. W. Luo; T. Luo; X. L. Luo; S. Lusso; X. R. Lyu; F. C. Ma; H. L. Ma; L. L. Ma; M. M. Ma; Q. M. Ma; R. Q. Ma; R. T. Ma; X. X. Ma; X. Y. Ma; F. E. Maas; M. Maggiora; S. Maldaner; S. Malde; Q. A. Malik; A. Mangoni; Y. J. Mao; Z. P. Mao; S. Marcello; Z. X. Meng; J. G. Messchendorp; G. Mezzadri; T. J. Min; R. E. Mitchell; X. H. Mo; Y. J. Mo; N. Yu. Muchnoi; H. Muramatsu; S. Nakhoul; Y. Nefedov; F. Nerling; I. B. Nikolaev; Z. Ning; S. Nisar; S. L. Olsen; Q. Ouyang; S. Pacetti; X. Pan; Y. Pan; A. Pathak; P. Patteri; M. Pelizaeus; H. P. Peng; K. Peters; J. L. Ping; R. G. Ping; R. Poling; V. Prasad; H. Qi; H. R. Qi; K. H. Qi; M. Qi; T. Y. Qi; T. Y. Qi; S. Qian; W. B. Qian; Z. Qian; C. F. Qiao; L. Q. Qin; X. P. Qin; X. S. Qin; Z. H. Qin; J. F. Qiu; S. Q. Qu; K. H. Rashid; K. Ravindran; C. F. Redmer; A. Rivetti; V. Rodin; M. Rolo; G. Rong; Ch. Rosner; M. Rump; H. S. Sang; A. Sarantsev; Y. Schelhaas; C. Schnier; K. Schönning; M. Scodeggio; D. C. Shan; W. Shan; X. Y. Shan; J. F. Shangguan; M. Shao; C. P. Shen; P. X. Shen; X. Y. Shen; H. C. Shi; R. S. Shi; X. Shi; X. D. Shi; J. J. Song; W. M. Song; Y. X. Song; S. Sosio; S. Spataro; K. X. Su; P. P. Su; F. F. Sui; G. X. Sun; H. K. Sun; J. F. Sun; L. Sun; S. S. Sun; T. Sun; W. Y. Sun; W. Y. Sun; X. Sun; Y. J. Sun; Y. K. Sun; Y. Z. Sun; Z. T. Sun; Y. H. Tan; Y. X. Tan; C. J. Tang; G. Y. Tang; J. Tang; J. X. Teng; V. Thoren; Y. T. Tian; I. Uman; B. Wang; C. W. Wang; D. Y. Wang; H. J. Wang; H. P. Wang; K. Wang; L. L. Wang; M. Wang; M. Z. Wang; Meng Wang; W. Wang; W. H. Wang; W. P. Wang; X. Wang; X. F. Wang; X. L. Wang; Y. Wang; Y. Wang; Y. D. Wang; Y. F. Wang; Y. Q. Wang; Y. Y. Wang; Z. Wang; Z. Y. Wang; Ziyi Wang; Zongyuan Wang; D. H. Wei; P. Weidenkaff; F. Weidner; S. P. Wen; D. J. White; U. Wiedner; G. Wilkinson; M. Wolke; L. Wollenberg; J. F. Wu; L. H. Wu; L. J. Wu; X. Wu; Z. Wu; L. Xia; H. Xiao; S. Y. Xiao; Z. J. Xiao; X. H. Xie; Y. G. Xie; Y. H. Xie; T. Y. Xing; G. F. Xu; Q. J. Xu; W. Xu; X. P. Xu; Y. C. Xu; F. Yan; L. Yan; W. B. Yan; W. C. Yan; Xu Yan; H. J. Yang; H. X. Yang; L. Yang; S. L. Yang; Y. X. Yang; Yifan Yang; Zhi Yang; M. Ye; M. H. Ye; J. H. Yin; Z. Y. You; B. X. Yu; C. X. Yu; G. Yu; J. S. Yu; T. Yu; C. Z. Yuan; L. Yuan; X. Q. Yuan; Y. Yuan; Z. Y. Yuan; C. X. Yue; A. A. Zafar; Y. Zeng; B. X. Zhang; Guangyi Zhang; H. Zhang; H. H. Zhang; H. H. Zhang; H. Y. Zhang; J. J. Zhang; J. L. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; Jianyu Zhang; Jiawei Zhang; L. M. Zhang; L. Q. Zhang; Lei Zhang; S. Zhang; S. F. Zhang; Shulei Zhang; X. D. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Y. T. Zhang; Yan Zhang; Yao Zhang; Yi Zhang; Z. H. Zhang; Z. Y. Zhang; G. Zhao; J. Zhao; J. Y. Zhao; J. Z. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; S. J. Zhao; Y. B. Zhao; Y. X. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; Y. Zheng; Y. H. Zheng; B. Zhong; C. Zhong; L. P. Zhou; Q. Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; X. Y. Zhou; A. N. Zhu; J. Zhu; K. Zhu; K. J. Zhu; S. H. Zhu; T. J. Zhu; W. J. Zhu; W. J. Zhu; Y. C. Zhu; Z. A. Zhu; B. S. Zou; J. H. Zou
<jats:title>Abstract</jats:title><jats:p>Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry<jats:sup>1</jats:sup>. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange <jats:italic>Ξ</jats:italic><jats:sup>−</jats:sup> baryon and its antiparticle<jats:sup>2</jats:sup><jats:inline-formula><jats:alternatives><jats:tex-math>$${\bar{{\Xi }}}^{+}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>Ξ</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>, has enabled a direct determination of the weak-phase difference, (<jats:italic>ξ</jats:italic><jats:sub>P</jats:sub> − <jats:italic>ξ</jats:italic><jats:sub>S</jats:sub>) = (1.2 ± 3.4 ± 0.8) × 10<jats:sup>−2</jats:sup> rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods<jats:sup>3</jats:sup>. Finally, we provide an independent measurement of the recently debated <jats:italic>Λ</jats:italic> decay parameter <jats:italic>α</jats:italic><jats:sub><jats:italic>Λ</jats:italic></jats:sub> (refs. <jats:sup>4,5</jats:sup>). The <jats:inline-formula><jats:alternatives><jats:tex-math>$${\Lambda }\bar{{\Lambda }}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Λ</mml:mi> <mml:mover> <mml:mi>Λ</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math></jats:alternatives></jats:inline-formula> asymmetry is in agreement with and compatible in precision to the most precise previous measurement<jats:sup>4</jats:sup>.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 64-69
Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule
Nathaniel B. Vilas; Christian Hallas; Loïc Anderegg; Paige Robichaud; Andrew Winnicki; Debayan Mitra; John M. Doyle
Palabras clave: Multidisciplinary.
Pp. 70-74
Quantum computational advantage with a programmable photonic processor
Lars S. Madsen; Fabian Laudenbach; Mohsen Falamarzi. Askarani; Fabien Rortais; Trevor Vincent; Jacob F. F. Bulmer; Filippo M. Miatto; Leonhard Neuhaus; Lukas G. Helt; Matthew J. Collins; Adriana E. Lita; Thomas Gerrits; Sae Woo Nam; Varun D. Vaidya; Matteo Menotti; Ish Dhand; Zachary Vernon; Nicolás Quesada; Jonathan Lavoie
<jats:title>Abstract</jats:title><jats:p>A quantum computer attains computational advantage when outperforming the best classical computers running the best-known algorithms on well-defined tasks. No photonic machine offering programmability over all its quantum gates has demonstrated quantum computational advantage: previous machines<jats:sup>1,2</jats:sup> were largely restricted to static gate sequences. Earlier photonic demonstrations were also vulnerable to spoofing<jats:sup>3</jats:sup>, in which classical heuristics produce samples, without direct simulation, lying closer to the ideal distribution than do samples from the quantum hardware. Here we report quantum computational advantage using Borealis, a photonic processor offering dynamic programmability on all gates implemented. We carry out Gaussian boson sampling<jats:sup>4</jats:sup> (GBS) on 216 squeezed modes entangled with three-dimensional connectivity<jats:sup>5</jats:sup>, using a time-multiplexed and photon-number-resolving architecture. On average, it would take more than 9,000 years for the best available algorithms and supercomputers to produce, using exact methods, a single sample from the programmed distribution, whereas Borealis requires only 36 μs. This runtime advantage is over 50 million times as extreme as that reported from earlier photonic machines. Ours constitutes a very large GBS experiment, registering events with up to 219 photons and a mean photon number of 125. This work is a critical milestone on the path to a practical quantum computer, validating key technological features of photonics as a platform for this goal.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 75-81
Non-Hermitian chiral phononics through optomechanically induced squeezing
Javier del Pino; Jesse J. Slim; Ewold Verhagen
Palabras clave: Multidisciplinary.
Pp. 82-87
Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111)
Kyung Yeol Ma; Leining Zhang; Sunghwan Jin; Yan Wang; Seong In Yoon; Hyuntae Hwang; Juseung Oh; Da Sol Jeong; Meihui Wang; Shahana Chatterjee; Gwangwoo Kim; A-Rang Jang; Jieun Yang; Sunmin Ryu; Hu Young Jeong; Rodney S. Ruoff; Manish Chhowalla; Feng Ding; Hyeon Suk Shin
Palabras clave: Multidisciplinary.
Pp. 88-93
A tissue-like neurotransmitter sensor for the brain and gut
Jinxing Li; Yuxin Liu; Lei Yuan; Baibing Zhang; Estelle Spear Bishop; Kecheng Wang; Jing Tang; Yu-Qing Zheng; Wenhui Xu; Simiao Niu; Levent Beker; Thomas L. Li; Gan Chen; Modupeola Diyaolu; Anne-Laure Thomas; Vittorio Mottini; Jeffrey B.-H. Tok; James C. Y. Dunn; Bianxiao Cui; Sergiu P. Pașca; Yi Cui; Aida Habtezion; Xiaoke Chen; Zhenan Bao
Palabras clave: Multidisciplinary.
Pp. 94-101
[18F]Difluorocarbene for positron emission tomography
Jeroen B. I. Sap; Claudio F. Meyer; Joseph Ford; Natan J. W. Straathof; Alexander B. Dürr; Mariah J. Lelos; Stephen J. Paisey; Tim A. Mollner; Sandrine M. Hell; Andrés A. Trabanco; Christophe Genicot; Christopher W. am Ende; Robert S. Paton; Matthew Tredwell; Véronique Gouverneur
Palabras clave: Multidisciplinary.
Pp. 102-108