Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature

Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com
No detectada desde jul. 2006 / hasta ago. 2012 Ovid

Información

Tipo de recurso:

revistas

ISSN impreso

0028-0836

ISSN electrónico

1476-4687

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Strongly correlated electron–photon systems

Jacqueline BlochORCID; Andrea CavalleriORCID; Victor Galitski; Mohammad HafeziORCID; Angel RubioORCID

Palabras clave: Multidisciplinary.

Pp. 41-48

The road to fully programmable protein catalysis

Sarah L. LovelockORCID; Rebecca Crawshaw; Sophie BaslerORCID; Colin Levy; David BakerORCID; Donald HilvertORCID; Anthony P. GreenORCID

Palabras clave: Multidisciplinary.

Pp. 49-58

Resolving the H i in damped Lyman α systems that power star formation

Rongmon BordoloiORCID; John M. O’Meara; Keren SharonORCID; Jane R. Rigby; Jeff Cooke; Ahmed ShabanORCID; Mateusz MatuszewskiORCID; Luca Rizzi; Greg Doppmann; D. Christopher Martin; Anna M. Moore; Patrick MorrisseyORCID; James D. NeillORCID

Palabras clave: Multidisciplinary.

Pp. 59-63

Probing CP symmetry and weak phases with entangled double-strange baryons

; M. Ablikim; M. N. Achasov; P. AdlarsonORCID; S. Ahmed; M. Albrecht; R. Aliberti; A. Amoroso; M. R. An; Q. An; X. H. Bai; Y. Bai; O. Bakina; R. Baldini Ferroli; I. Balossino; Y. Ban; K. Begzsuren; N. Berger; M. Bertani; D. Bettoni; F. Bianchi; J. Biernat; J. Bloms; A. Bortone; I. Boyko; R. A. Briere; H. Cai; X. Cai; A. Calcaterra; G. F. Cao; N. Cao; S. A. Cetin; J. F. Chang; W. L. Chang; G. Chelkov; D. Y. Chen; G. Chen; H. S. Chen; M. L. Chen; S. J. Chen; X. R. Chen; Y. B. Chen; Z. J. Chen; W. S. Cheng; G. Cibinetto; F. Cossio; X. F. Cui; H. L. Dai; X. C. Dai; A. Dbeyssi; R. E. de Boer; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; F. De Mori; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; X. Dong; S. X. Du; Y. L. Fan; J. Fang; S. S. Fang; Y. Fang; R. Farinelli; L. Fava; F. Feldbauer; G. Felici; C. Q. Feng; J. H. Feng; M. Fritsch; C. D. Fu; Y. Gao; Y. Gao; Y. Gao; Y. G. Gao; I. Garzia; P. T. Ge; C. Geng; E. M. Gersabeck; A. Gilman; K. Goetzen; L. Gong; W. X. Gong; W. Gradl; M. Greco; L. M. Gu; M. H. Gu; S. Gu; Y. T. Gu; C. Y. Guan; A. Q. Guo; L. B. Guo; R. P. Guo; Y. P. Guo; A. Guskov; T. T. Han; W. Y. Han; J. Hansson; X. Q. Hao; F. A. Harris; N. Hüsken; K. L. He; F. H. Heinsius; C. H. Heinz; T. Held; Y. K. Heng; C. Herold; M. Himmelreich; T. Holtmann; Y. R. Hou; Z. L. Hou; H. M. Hu; J. F. Hu; T. Hu; Y. Hu; G. S. Huang; L. Q. Huang; X. T. Huang; Y. P. Huang; Z. Huang; T. Hussain; W. Ikegami Andersson; W. Imoehl; M. Irshad; S. Jaeger; S. Janchiv; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; Y. Y. Ji; H. B. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; S. Jin; Y. Jin; T. Johansson; N. Kalantar-Nayestanaki; X. S. Kang; R. Kappert; M. Kavatsyuk; B. C. Ke; I. K. Keshk; A. Khoukaz; P. Kiese; R. Kiuchi; R. Kliemt; L. Koch; O. B. Kolcu; B. Kopf; M. Kuemmel; M. Kuessner; A. KupscORCID; M. G. Kurth; W. Kühn; J. J. Lane; J. S. Lange; P. Larin; A. Lavania; L. Lavezzi; Z. H. Lei; H. Leithoff; M. Lellmann; T. Lenz; C. Li; C. H. Li; Cheng Li; D. M. Li; F. Li; G. Li; H. Li; H. Li; H. B. Li; H. J. Li; H. J. Li; J. L. Li; J. Q. Li; J. S. Li; Ke Li; L. K. Li; Lei Li; P. R. Li; S. Y. Li; W. D. Li; W. G. Li; X. H. Li; X. L. Li; Xiaoyu Li; Z. Y. Li; H. Liang; H. Liang; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; L. Z. Liao; J. Libby; C. X. Lin; B. J. Liu; C. X. Liu; D. Liu; F. H. Liu; Fang Liu; Feng Liu; H. B. Liu; H. M. Liu; Huanhuan Liu; Huihui Liu; J. B. Liu; J. L. Liu; J. Y. Liu; K. Liu; K. Y. Liu; Ke Liu; L. Liu; M. H. Liu; P. L. Liu; Q. Liu; Q. Liu; S. B. Liu; Shuai Liu; T. Liu; W. M. Liu; X. Liu; Y. Liu; Y. B. Liu; Z. A. Liu; Z. Q. Liu; X. C. Lou; F. X. Lu; F. X. Lu; H. J. Lu; J. D. Lu; J. G. Lu; X. L. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; P. W. Luo; T. Luo; X. L. Luo; S. Lusso; X. R. Lyu; F. C. Ma; H. L. Ma; L. L. Ma; M. M. Ma; Q. M. Ma; R. Q. Ma; R. T. Ma; X. X. Ma; X. Y. Ma; F. E. Maas; M. Maggiora; S. Maldaner; S. Malde; Q. A. Malik; A. Mangoni; Y. J. Mao; Z. P. Mao; S. Marcello; Z. X. Meng; J. G. Messchendorp; G. Mezzadri; T. J. Min; R. E. Mitchell; X. H. Mo; Y. J. Mo; N. Yu. Muchnoi; H. Muramatsu; S. Nakhoul; Y. Nefedov; F. Nerling; I. B. Nikolaev; Z. Ning; S. Nisar; S. L. Olsen; Q. Ouyang; S. Pacetti; X. Pan; Y. Pan; A. Pathak; P. Patteri; M. Pelizaeus; H. P. Peng; K. Peters; J. L. Ping; R. G. Ping; R. Poling; V. Prasad; H. Qi; H. R. Qi; K. H. Qi; M. Qi; T. Y. Qi; T. Y. Qi; S. Qian; W. B. Qian; Z. Qian; C. F. Qiao; L. Q. Qin; X. P. Qin; X. S. Qin; Z. H. Qin; J. F. Qiu; S. Q. Qu; K. H. Rashid; K. Ravindran; C. F. Redmer; A. Rivetti; V. Rodin; M. Rolo; G. Rong; Ch. Rosner; M. Rump; H. S. Sang; A. Sarantsev; Y. Schelhaas; C. Schnier; K. SchönningORCID; M. Scodeggio; D. C. Shan; W. Shan; X. Y. Shan; J. F. Shangguan; M. Shao; C. P. Shen; P. X. Shen; X. Y. Shen; H. C. Shi; R. S. Shi; X. Shi; X. D. Shi; J. J. Song; W. M. Song; Y. X. Song; S. Sosio; S. Spataro; K. X. Su; P. P. Su; F. F. Sui; G. X. Sun; H. K. Sun; J. F. Sun; L. Sun; S. S. Sun; T. Sun; W. Y. Sun; W. Y. Sun; X. Sun; Y. J. Sun; Y. K. Sun; Y. Z. Sun; Z. T. Sun; Y. H. Tan; Y. X. Tan; C. J. Tang; G. Y. Tang; J. Tang; J. X. Teng; V. Thoren; Y. T. Tian; I. Uman; B. Wang; C. W. Wang; D. Y. Wang; H. J. Wang; H. P. Wang; K. Wang; L. L. Wang; M. Wang; M. Z. Wang; Meng Wang; W. Wang; W. H. Wang; W. P. Wang; X. Wang; X. F. Wang; X. L. Wang; Y. Wang; Y. Wang; Y. D. Wang; Y. F. Wang; Y. Q. Wang; Y. Y. Wang; Z. Wang; Z. Y. Wang; Ziyi Wang; Zongyuan Wang; D. H. Wei; P. Weidenkaff; F. Weidner; S. P. Wen; D. J. White; U. Wiedner; G. Wilkinson; M. Wolke; L. Wollenberg; J. F. Wu; L. H. Wu; L. J. Wu; X. Wu; Z. Wu; L. Xia; H. Xiao; S. Y. Xiao; Z. J. Xiao; X. H. Xie; Y. G. Xie; Y. H. Xie; T. Y. Xing; G. F. Xu; Q. J. Xu; W. Xu; X. P. Xu; Y. C. Xu; F. Yan; L. Yan; W. B. Yan; W. C. Yan; Xu Yan; H. J. Yang; H. X. Yang; L. Yang; S. L. Yang; Y. X. Yang; Yifan Yang; Zhi Yang; M. Ye; M. H. Ye; J. H. Yin; Z. Y. You; B. X. Yu; C. X. Yu; G. Yu; J. S. Yu; T. Yu; C. Z. Yuan; L. Yuan; X. Q. Yuan; Y. Yuan; Z. Y. Yuan; C. X. Yue; A. A. Zafar; Y. Zeng; B. X. Zhang; Guangyi Zhang; H. Zhang; H. H. Zhang; H. H. Zhang; H. Y. Zhang; J. J. Zhang; J. L. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; Jianyu Zhang; Jiawei Zhang; L. M. Zhang; L. Q. Zhang; Lei Zhang; S. Zhang; S. F. Zhang; Shulei Zhang; X. D. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Y. T. Zhang; Yan Zhang; Yao Zhang; Yi Zhang; Z. H. Zhang; Z. Y. Zhang; G. Zhao; J. Zhao; J. Y. Zhao; J. Z. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; S. J. Zhao; Y. B. Zhao; Y. X. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; Y. Zheng; Y. H. Zheng; B. Zhong; C. Zhong; L. P. Zhou; Q. Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; X. Y. Zhou; A. N. Zhu; J. Zhu; K. Zhu; K. J. Zhu; S. H. Zhu; T. J. Zhu; W. J. Zhu; W. J. Zhu; Y. C. Zhu; Z. A. Zhu; B. S. Zou; J. H. Zou

<jats:title>Abstract</jats:title><jats:p>Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry<jats:sup>1</jats:sup>. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange <jats:italic>Ξ</jats:italic><jats:sup>−</jats:sup> baryon and its antiparticle<jats:sup>2</jats:sup><jats:inline-formula><jats:alternatives><jats:tex-math>$${\bar{{\Xi }}}^{+}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>Ξ</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>, has enabled a direct determination of the weak-phase difference, (<jats:italic>ξ</jats:italic><jats:sub>P</jats:sub> − <jats:italic>ξ</jats:italic><jats:sub>S</jats:sub>) = (1.2 ± 3.4 ± 0.8) × 10<jats:sup>−2</jats:sup> rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods<jats:sup>3</jats:sup>. Finally, we provide an independent measurement of the recently debated <jats:italic>Λ</jats:italic> decay parameter <jats:italic>α</jats:italic><jats:sub><jats:italic>Λ</jats:italic></jats:sub> (refs. <jats:sup>4,5</jats:sup>). The <jats:inline-formula><jats:alternatives><jats:tex-math>$${\Lambda }\bar{{\Lambda }}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Λ</mml:mi> <mml:mover> <mml:mi>Λ</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math></jats:alternatives></jats:inline-formula> asymmetry is in agreement with and compatible in precision to the most precise previous measurement<jats:sup>4</jats:sup>.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 64-69

Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule

Nathaniel B. VilasORCID; Christian HallasORCID; Loïc AndereggORCID; Paige Robichaud; Andrew Winnicki; Debayan Mitra; John M. Doyle

Palabras clave: Multidisciplinary.

Pp. 70-74

Quantum computational advantage with a programmable photonic processor

Lars S. Madsen; Fabian Laudenbach; Mohsen Falamarzi. Askarani; Fabien Rortais; Trevor Vincent; Jacob F. F. BulmerORCID; Filippo M. MiattoORCID; Leonhard Neuhaus; Lukas G. HeltORCID; Matthew J. CollinsORCID; Adriana E. Lita; Thomas Gerrits; Sae Woo Nam; Varun D. Vaidya; Matteo Menotti; Ish Dhand; Zachary VernonORCID; Nicolás Quesada; Jonathan LavoieORCID

<jats:title>Abstract</jats:title><jats:p>A quantum computer attains computational advantage when outperforming the best classical computers running the best-known algorithms on well-defined tasks. No photonic machine offering programmability over all its quantum gates has demonstrated quantum computational advantage: previous machines<jats:sup>1,2</jats:sup> were largely restricted to static gate sequences. Earlier photonic demonstrations were also vulnerable to spoofing<jats:sup>3</jats:sup>, in which classical heuristics produce samples, without direct simulation, lying closer to the ideal distribution than do samples from the quantum hardware. Here we report quantum computational advantage using Borealis, a photonic processor offering dynamic programmability on all gates implemented. We carry out Gaussian boson sampling<jats:sup>4</jats:sup> (GBS) on 216 squeezed modes entangled with three-dimensional connectivity<jats:sup>5</jats:sup>, using a time-multiplexed and photon-number-resolving architecture. On average, it would take more than 9,000 years for the best available algorithms and supercomputers to produce, using exact methods, a single sample from the programmed distribution, whereas Borealis requires only 36 μs. This runtime advantage is over 50 million times as extreme as that reported from earlier photonic machines. Ours constitutes a very large GBS experiment, registering events with up to 219 photons and a mean photon number of 125. This work is a critical milestone on the path to a practical quantum computer, validating key technological features of photonics as a platform for this goal.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 75-81

Non-Hermitian chiral phononics through optomechanically induced squeezing

Javier del PinoORCID; Jesse J. SlimORCID; Ewold Verhagen

Palabras clave: Multidisciplinary.

Pp. 82-87

Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111)

Kyung Yeol Ma; Leining Zhang; Sunghwan JinORCID; Yan WangORCID; Seong In Yoon; Hyuntae Hwang; Juseung Oh; Da Sol Jeong; Meihui WangORCID; Shahana Chatterjee; Gwangwoo KimORCID; A-Rang Jang; Jieun Yang; Sunmin RyuORCID; Hu Young JeongORCID; Rodney S. RuoffORCID; Manish ChhowallaORCID; Feng DingORCID; Hyeon Suk ShinORCID

Palabras clave: Multidisciplinary.

Pp. 88-93

A tissue-like neurotransmitter sensor for the brain and gut

Jinxing Li; Yuxin LiuORCID; Lei Yuan; Baibing Zhang; Estelle Spear Bishop; Kecheng Wang; Jing Tang; Yu-Qing Zheng; Wenhui XuORCID; Simiao Niu; Levent Beker; Thomas L. LiORCID; Gan ChenORCID; Modupeola Diyaolu; Anne-Laure ThomasORCID; Vittorio Mottini; Jeffrey B.-H. TokORCID; James C. Y. DunnORCID; Bianxiao CuiORCID; Sergiu P. PașcaORCID; Yi CuiORCID; Aida Habtezion; Xiaoke Chen; Zhenan BaoORCID

Palabras clave: Multidisciplinary.

Pp. 94-101

[18F]Difluorocarbene for positron emission tomography

Jeroen B. I. Sap; Claudio F. MeyerORCID; Joseph Ford; Natan J. W. StraathofORCID; Alexander B. Dürr; Mariah J. LelosORCID; Stephen J. PaiseyORCID; Tim A. MollnerORCID; Sandrine M. HellORCID; Andrés A. Trabanco; Christophe Genicot; Christopher W. am EndeORCID; Robert S. PatonORCID; Matthew TredwellORCID; Véronique GouverneurORCID

Palabras clave: Multidisciplinary.

Pp. 102-108