Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics B

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics B covers the latest developments and achievements in all branches of physics. Articles, including papers and rapid communications, are those approved as creative contributions to the whole discipline of physics and of significance to their own fields.
Palabras clave – provistas por la editorial

No disponibles.

Historia

Continúa: Chinese Physics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1056

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Mott transition in ruby lattice Hubbard model*

An Bao

<jats:title>Abstract</jats:title> <jats:p>Mott transition in a ruby lattice with fermions described by the Hubbard model including on-site repulsive interaction is investigated by combining the cellular dynamical mean-field theory and the continuous-time quantum Monte Carlo algorithm. The effect of temperature and on-site repulsive interaction on the metallic–insulating phase transition in ruby lattice with fermions is discussed based on the density of states and double occupancy. In addition, the magnetic property of each phase is discussed by defining certain magnetic order parameters. Our results show that the antiferromagnetic metal is found at the low temperature and weak interaction region and the antiferromagnetic insulating phase is found at the low temperature and strong interaction region. The paramagnetic metal appears in whole on-site repulsive interaction region when the temperature is higher than a certain value and the paramagnetic insulator appears at the middle scale of temperature and on-site repulsive interaction.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057101

Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal*

Ding Yu; Guiying Shen; Hui Xie; Jingming Liu; Jing Sun; Youwen Zhao

<jats:title>Abstract</jats:title> <jats:p>Te-doped GaSb single crystal grown by the liquid encapsulated Czochralski (LEC) method exhibits a lag of compensating progress and a maximum carrier concentration around 8×10<jats:sup>17</jats:sup> cm<jats:sup>−3</jats:sup>. The reason for this phenomenon has been investigated by a quantity concentration evaluation of the Te donor and native acceptor. The results of glow discharge mass spectrometry (GDMS) and Hall measurement suggest that the acceptor concentration increases with the increase of Te doping concentration, resulting in the enhancement of electrical compensation and free electron concentration reduction. The acceptor concentration variation is further demonstrated by photoluminescence spectra and explained by the principle of Fermi level dependent defect formation energy.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057102

Effects of interface bound states on the shot noise in normal metal–low-dimensional Rashba semiconductor tunnel junctions with induced s-wave pairing potential

Wen-Xiang Chen; Rui-Qiang Wang; Liang-Bin Hu

<jats:title>Abstract</jats:title> <jats:p>We consider the effects of interface bound states on the electrical shot noise in tunnel junctions formed between normal metals and one-dimensional (1D) or two-dimensional (2D) Rashba semiconductors with proximity-induced s-wave pairing potential. We investigate how the shot noise properties vary as the interface bound state is evolved from a non-zero energy bound state to a zero-energy bound state. We show that in both 1D and 2D tunnel junctions, the ratio of the noise power to the charge current in the vicinity of zero bias voltage may be enhanced significantly due to the induction of the midgap interface bound state. But as the interface bound state evolves from a non-zero energy bound state to a zero-energy bound state, this ratio tends to vanish completely at zero bias voltage in 1D tunnel junctions, while in 2D tunnel junctions it decreases smoothly to the usual classical Schottky value for the normal state. Some other important aspects of the shot noise properties in such tunnel junctions are also clarified.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057201

Tunable superconductivity in parent cuprate Pr2CuO4±δ thin films*

Xinjian Wei; Ge He; Wei Hu; Xu Zhang; Mingyang Qin; Jie Yuan; Beiyi Zhu; Yuan Lin; Kui Jin

<jats:title>Abstract</jats:title> <jats:p>We studied the role of oxygen in Pr<jats:sub>2</jats:sub>CuO<jats:sub>4±<jats:italic>δ</jats:italic> </jats:sub> thin films fabricated by the polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr<jats:sub>2</jats:sub>CuO<jats:sub>4±<jats:italic>δ</jats:italic> </jats:sub> samples were systematically investigated. It was found that with decreasing oxygen content, the low-temperature Hall coefficient (<jats:italic>R</jats:italic> <jats:sub>H</jats:sub>) and magnetoresistance changed from negative to positive, similar to those with the increase of Ce-doped concentration in <jats:inline-formula> <jats:tex-math><?CDATA ${R}_{2-x}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057401_ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> Ce<jats:sub> <jats:italic>x</jats:italic> </jats:sub>CuO<jats:sub>4</jats:sub> (<jats:italic>R</jats:italic>=La, Nd, Pr, Sm, Eu). In addition, we observed that the dependence of the superconducting critical temperature <jats:italic>T</jats:italic> <jats:sub>c</jats:sub> with <jats:italic>R</jats:italic> <jats:sub>H</jats:sub> for the Pr<jats:sub>2−<jats:italic>x</jats:italic> </jats:sub>Ce<jats:sub> <jats:italic>x</jats:italic> </jats:sub>CuO<jats:sub>4</jats:sub> perfectly overlapped with that of Pr<jats:sub>2</jats:sub>CuO<jats:sub>4±<jats:italic>δ</jats:italic> </jats:sub>. These findings point to the fact that the doped electrons induced by the oxygen removal are responsible for the superconductivity of the <jats:inline-formula> <jats:tex-math><?CDATA ${T}^{{\prime} }$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>′</mml:mo> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057401_ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>-phase parent compounds.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057401

Particle–hole fluctuations and possible superconductivity in doped α-RuCl3*

Bin-Bin Wang; Wei Wang; Shun-Li Yu; Jian-Xin Li

<jats:title>Abstract</jats:title> <jats:p>We study various particle–hole excitations and possible superconducting pairings mediated by these fluctuations in doped <jats:italic>α</jats:italic>-RuCl<jats:sub>3</jats:sub> by using multi-band Hubbard model with all t<jats:sub>2g</jats:sub> orbitals. By performing a random-phase-approximation (RPA) analysis, we find that among all particle–hole excitations, the <jats:italic>j</jats:italic> <jats:sub>eff</jats:sub> = 1/2 pseudospin fluctuations are dominant, suggesting the robustness of <jats:italic>j</jats:italic> <jats:sub>eff</jats:sub> = 1/2 picture even in the doped systems. We also find that the most favorable superconducting state has a d-wave pairing symmetry.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057402

Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2*

Y Peng; S Yu; G Q Zhao; W M Li; J F Zhao; L P Cao; X C Wang; Q Q Liu; S J Zhang; R Z Yu; Z Deng; X H Zhu; C Q Jin

<jats:title>Abstract</jats:title> <jats:p>Chemical pressure induced by iso-valent doping has been widely employed to tune physical properties of materials. In this work, we report effects of chemical pressure by substitution of Sb or P into As on a recently discovered diluted magnetic semiconductor (Ba,K)(Zn,Mn)<jats:sub>2</jats:sub>As<jats:sub>2</jats:sub>, which has the record of reliable Curie temperature of 230 K due to independent charge and spin doping. Sb and P are substituted into As-site to produce negative and positive chemical pressures, respectively. X-ray diffraction results demonstrate the successful chemical solution of dopants. Magnetic properties of both K-under-doped and K-optimal-doped samples are effectively tuned by Sb- and P-doping. The Hall effect measurements do not show decrease in carrier concentrations upon Sb- and P-doping. Impressively, magnetoresistance is significantly improved from 7% to 27% by only 10% P-doping, successfully extending potential application of (Ba,K)(Zn,Mn)<jats:sub>2</jats:sub>As<jats:sub>2</jats:sub>.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057501

Magnetic properties and magnetocaloric effects in (Ho1−xYx)5Pd2 compounds*

X F Wu; C P Guo; G Cheng; C R Li; J Wang; Y S Du; G H Rao; Z M Du

<jats:title>Abstract</jats:title> <jats:p>The crystal structure, magnetic and magnetocaloric properties of (Ho<jats:sub>1−<jats:italic>x</jats:italic> </jats:sub>Y<jats:sub> <jats:italic>x</jats:italic> </jats:sub>)<jats:sub>5</jats:sub>Pd<jats:sub>2</jats:sub> (<jats:italic>x</jats:italic> = 0, 0.25, and 0.5) compounds are investigated. All the compounds crystallize in a cubic Dy<jats:sub>5</jats:sub>Pd<jats:sub>2</jats:sub>-type structure with the space group <jats:italic>Fd</jats:italic>3<jats:italic>m</jats:italic> and undergo a second order transition from spin glass (SG) state to paramagnetic (PM) state. The spin glass transition temperatures <jats:italic>T</jats:italic> <jats:sub>g</jats:sub> decrease from 26 K for <jats:italic>x</jats:italic> = 0 to 13 K for <jats:italic>x</jats:italic> = 0.5. In the PM region, the reciprocal susceptibilities for all the compounds obey the Curie–Weiss law. The paramagnetic Curie temperatures (<jats:inline-formula> <jats:tex-math><?CDATA ${\theta }_{{\rm{p}}}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">p</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>) for Ho<jats:sub>5</jats:sub>Pd<jats:sub>2</jats:sub>, (Ho<jats:sub>0.75</jats:sub>Y<jats:sub>0.25</jats:sub>)<jats:sub>5</jats:sub>Pd<jats:sub>2</jats:sub>, and (Ho<jats:sub>0.5</jats:sub>Y<jats:sub>0.5</jats:sub>)<jats:sub>5</jats:sub>Pd<jats:sub>2</jats:sub> are determined to be 32 K, 30 K, and 22 K, respectively, and the corresponding effective magnetic moments (<jats:inline-formula> <jats:tex-math><?CDATA ${\mu }_{\mathrm{eff}})$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>eff</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> are 10.8 <jats:inline-formula> <jats:tex-math><?CDATA ${\mu }_{{\rm{B}}}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">B</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>/Ho, 10.3 <jats:inline-formula> <jats:tex-math><?CDATA ${\mu }_{{\rm{B}}}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">B</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>/RE, and 7.5 <jats:inline-formula> <jats:tex-math><?CDATA ${\mu }_{{\rm{B}}}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">B</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>/RE, respectively. Magnetocaloric effect (MCE) is anticipated according to the Maxwell relation, based on the isothermal magnetization curves. For a magnetic field change of 0–5 T, the maximum values of the isothermal magnetic entropy change <jats:inline-formula> <jats:tex-math><?CDATA $-{\rm{\Delta }}{S}_{{\rm{M}}}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo>−</mml:mo> <mml:mi mathvariant="normal">Δ</mml:mi> <mml:msub> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">M</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn6.gif" xlink:type="simple" /> </jats:inline-formula> of the (Ho<jats:sub>1−<jats:italic>x</jats:italic> </jats:sub>Y<jats:sub> <jats:italic>x</jats:italic> </jats:sub>)<jats:sub>5</jats:sub>Pd<jats:sub>2</jats:sub> (<jats:italic>x</jats:italic> = 0, 0.25, and 0.5) compounds are determined to be <jats:inline-formula> <jats:tex-math><?CDATA $11.5\,{\rm{J}}\cdot {\mathrm{kg}}^{-1}\cdot {{\rm{K}}}^{-1}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>11.5</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">J</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi>kg</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn7.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $11.1\,{\rm{J}}\cdot {\mathrm{kg}}^{-1}\cdot {{\rm{K}}}^{-1}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>11.1</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">J</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi>kg</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn8.gif" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $8.9\,{\rm{K}}\,{\rm{J}}\cdot {\mathrm{kg}}^{-1}\cdot {{\rm{K}}}^{-1}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>8.9</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">K</mml:mi> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">J</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi>kg</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn9.gif" xlink:type="simple" /> </jats:inline-formula>, with corresponding refrigerant capacity values of <jats:inline-formula> <jats:tex-math><?CDATA $382.3\,{\rm{J}}\cdot {\mathrm{kg}}^{-1}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>382.3</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">J</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi>kg</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn10.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $336.2\,{\rm{J}}\cdot {\mathrm{kg}}^{-1}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>336.2</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">J</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi>kg</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn11.gif" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $242.5\,{\rm{J}}\cdot {\mathrm{kg}}^{-1}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>242.5</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">J</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi>kg</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057502_ieqn12.gif" xlink:type="simple" /> </jats:inline-formula>, respectively.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057502

Enhanced soft magnetic properties of iron powders through coating MnZn ferrite by one-step sol–gel synthesis*

Dong Liu; Shanmin Gao; Rencheng Jin; Feng Wang; Xiaoxiao Chu; Taiping Gao; Yubao Wang

<jats:title>Abstract</jats:title> <jats:p>The MnZn ferrite coating formed on the surface of iron-based soft magnetic powders via facile and modified sol–gel process has been fabricated to obtain better magnetic performance due to its higher permeability compared with traditional nonmagnetic insulation coatings. The influence of the MnZn ferrite contents on the magnetic performance of the soft magnetic composites (SMCs) has been studied. As the MnZn insulation content increases, the core loss first experiences a decreasing trend that is followed by progressive increase, while the permeability follows an increasing trend and subsequently degrades. The optimized magnetic performance is achieved with 2.0 wt% MnZn ferrite, which results from the decrement of inter-particle eddy current losses based on loss separation. A uniform and compact coating layer composed of MnZn ferrite and oxides with an average thickness of <jats:inline-formula> <jats:tex-math><?CDATA $0.38\pm 0.08\,{\rm{\mu }}{\rm{m}}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>0.38</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.08</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">μ</mml:mi> <mml:mi mathvariant="normal">m</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057503_ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> is obtained by utilizing ion beam technology, and the interface between the powders and the coating shows satisfied adhesiveness compared with the sample directly prepared by mechanical mixing. The evolution of the coating layers during the calcination process has been presented based on careful analysis of the composition and microstructure.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057503

Computational study of inverse ferrite spinels

A EL Maazouzi; R Masrour; A Jabar; M Hamedoun

<jats:title>Abstract</jats:title> <jats:p>The magnetic properties of inverse ferrite <jats:inline-formula> <jats:tex-math><?CDATA $({\mathrm{Fe}}^{3+})[{\mathrm{Fe}}^{3+}{\mathrm{Co}}^{2+}]{{\rm{O}}}_{4}^{2-},({\mathrm{Fe}}^{3+})[{\mathrm{Fe}}^{3+}{\mathrm{Cu}}^{2+}]{{\rm{O}}}_{4}^{2-},({\mathrm{Fe}}^{3+})[{\mathrm{Fe}}^{3+}{\mathrm{Fe}}^{2+}]{{\rm{O}}}_{4}^{2-}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mi>Co</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">]</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">O</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mi>Cu</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">]</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">O</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>,</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">]</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">O</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057504_ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $({\mathrm{Fe}}^{3+})[{\mathrm{Fe}}^{3+}{\mathrm{Ni}}^{2+}]{{\rm{O}}}_{4}^{2-}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Fe</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mi>Ni</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">]</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">O</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057504_ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> spinels have been studied using Monte Carlo simulation. We have also calculated the critical and Curie Weiss temperatures from the thermal magnetizations and inverse of magnetic susceptibilities for each system. Magnetic hysteresis cycles have been found for the four systems. Finally, we found the critical exponents associated with magnetization, magnetic susceptibility, and external magnetic field. Our results of critical and Curie Weiss temperatures are similar to those obtained by experiment results. The critical exponents are similar to those of known 3D-Ising model.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057504

Influence of additives on the magnetic damping constant of CoIr soft magnetic thin films with negative magnetocrystalline anisotropy*

Tianyong Ma; Zhi Luo; Zhiwei Li; Liang Qiao; Tao Wang; Fashen Li

<jats:title>Abstract</jats:title> <jats:p>The oriented <jats:inline-formula> <jats:tex-math><?CDATA ${(\mathrm{CoIr})}_{100-x}{P}_{x}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>CoIr</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>100</mml:mn> <mml:mo>−</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> </mml:msub> <mml:msub> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>x</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_28_5_057505_ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> (<jats:italic>P</jats:italic>=B, Ni, and SiO<jats:sub>2</jats:sub>) soft magnetic films are prepared. Their morphology is measured using transmission electron microscopy (TEM), and reveals that these films exhibit good crystallinity and high degree of the <jats:italic>c</jats:italic>-axis orientation. The magnetic properties are thoroughly investigated as a function of doping <jats:italic>x</jats:italic>. Our results show that all of these films possess negative magnetocrystalline anisotropy as required by possible applications. Both the intrinsic and extrinsic contributions are considered to interpret the broadening of the ferromagnetic resonance spectral linewidth. The intrinsic Gilbert damping is identified as the main cause of the linewidth broadening, while the extrinsic part originating from inhomogeneities only plays a minor role. More interestingly, our results show that the damping constant can be controlled by using the doping method.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. 057505