Catálogo de publicaciones - libros

Compartir en
redes sociales


Arguing on the Toulmin Model: New Essays in Argument Analysis and Evaluation

David Hitchcock ; Bart Verheij (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Epistemology; Artificial Intelligence (incl. Robotics); Logic

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4937-8

ISBN electrónico

978-1-4020-4938-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2006

Tabla de contenidos

Introduction

David Hitchcock; Bart Verheij

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 1-23

Reasoning in Theory and Practice

Stephen E. Toulmin

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 25-29

A Citation-Based Reflection on Toulmin and Argument

Ronald P. Loui

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 31-38

Complex Cases and Legitimation Inference: Extending the Toulmin Model to Deliberative Argument in Controversy

G. Thomas Goodnight

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 39-48

A Metamathematical Extension of the Toulmin Agenda

Mark Weinstein

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 49-69

Toulmin's Model of Argument and the Question of Relativism

Lilian Bermejo-Luque

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 71-85

Systematizing Toulmin's Warrants: An Epistemic Approach

James B. Freeman

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 87-101

Warranting Arguments, the Virtue of Verb

James F. Klumpp

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 103-113

Evaluating Inferences: The Nature and Role of Warrants

Robert C. Pinto

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 115-143

‘Probably’

Robert H. Ennis

In this paper we present a new decision procedure for the satisfiability of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional variables and linear constraints over numerical variables. Our approach is based on the well known integration of a propositional SAT procedure with theory deciders, enhanced in the following ways.

First, our procedure relies on an solver for linear arithmetic, that is able to exploit the fact that it is repeatedly called to analyze sequences of increasingly large sets of constraints. Reasoning in the theory of LA interacts with the boolean top level by means of a stack-based interface, that enables the top level to add constraints, set points of backtracking, and backjump, without restarting the procedure from scratch at every call. Sets of inconsistent constraints are found and used to drive backjumping and learning at the boolean level, and theory atoms that are consequences of the current partial assignment are inferred.

Second, the solver is : a satisfying assignment is constructed by reasoning at different levels of abstractions (logic of equality, real values, and integer solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning is partitioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough experimental evaluation: our approach is competitive with and often superior to several state-of-the-art decision procedures.

Pp. 145-164