Catálogo de publicaciones - libros

Compartir en
redes sociales


Sampling for Natural Resource Monitoring

Jaap J. de Gruijter Marc F. P. Bierkens Dick J. Brus Martin Knotters

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-22486-0

ISBN electrónico

978-3-540-33161-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Cobertura temática

Tabla de contenidos

Global Quantities in Time

Jaap J. de Gruijter; Marc F. P. Bierkens; Dick J. Brus; Martin Knotters

The physical structure of an estuary is governed by geological circumstance and shaped by a combination of river flows, tidal characteristics, current speeds and wave action. An over-riding constraint on estuarine biota is the nature of the variable salinity regime, since the capacity for ionic and osmotic regulation varies greatly between species and sets the limits for their distribution. Of equal importance, if the organism is to settle and survive, are the properties of deposits. Superimposed on these primary drivers are numerous other factors that influence estuarine biota, either directly or indirectly. These include light attenuation and oxygenation patterns (natural characteristics), together with an assortment of anthropogenic impacts. The current chapter focuses on the ways in which geological and geochemical features (substrate properties) impinge on estuarine ecosystems, including modifications made as a result of contaminant bioavailability and toxicity. We also consider ways in which biological activity can mobility in estuaries through processes such as bioturbation and biodeposition.

Part III - Sampling in Time | Pp. 181-187

Local Quantities in Time

Jaap J. de Gruijter; Marc F. P. Bierkens; Dick J. Brus; Martin Knotters

The physical structure of an estuary is governed by geological circumstance and shaped by a combination of river flows, tidal characteristics, current speeds and wave action. An over-riding constraint on estuarine biota is the nature of the variable salinity regime, since the capacity for ionic and osmotic regulation varies greatly between species and sets the limits for their distribution. Of equal importance, if the organism is to settle and survive, are the properties of deposits. Superimposed on these primary drivers are numerous other factors that influence estuarine biota, either directly or indirectly. These include light attenuation and oxygenation patterns (natural characteristics), together with an assortment of anthropogenic impacts. The current chapter focuses on the ways in which geological and geochemical features (substrate properties) impinge on estuarine ecosystems, including modifications made as a result of contaminant bioavailability and toxicity. We also consider ways in which biological activity can mobility in estuaries through processes such as bioturbation and biodeposition.

Part III - Sampling in Time | Pp. 189-190

Time-Series Models

Jaap J. de Gruijter; Marc F. P. Bierkens; Dick J. Brus; Martin Knotters

The physical structure of an estuary is governed by geological circumstance and shaped by a combination of river flows, tidal characteristics, current speeds and wave action. An over-riding constraint on estuarine biota is the nature of the variable salinity regime, since the capacity for ionic and osmotic regulation varies greatly between species and sets the limits for their distribution. Of equal importance, if the organism is to settle and survive, are the properties of deposits. Superimposed on these primary drivers are numerous other factors that influence estuarine biota, either directly or indirectly. These include light attenuation and oxygenation patterns (natural characteristics), together with an assortment of anthropogenic impacts. The current chapter focuses on the ways in which geological and geochemical features (substrate properties) impinge on estuarine ecosystems, including modifications made as a result of contaminant bioavailability and toxicity. We also consider ways in which biological activity can mobility in estuaries through processes such as bioturbation and biodeposition.

Part III - Sampling in Time | Pp. 191-207

Introduction to Sampling in Space-Time

Jaap J. de Gruijter; Marc F. P. Bierkens; Dick J. Brus; Martin Knotters

The physical structure of an estuary is governed by geological circumstance and shaped by a combination of river flows, tidal characteristics, current speeds and wave action. An over-riding constraint on estuarine biota is the nature of the variable salinity regime, since the capacity for ionic and osmotic regulation varies greatly between species and sets the limits for their distribution. Of equal importance, if the organism is to settle and survive, are the properties of deposits. Superimposed on these primary drivers are numerous other factors that influence estuarine biota, either directly or indirectly. These include light attenuation and oxygenation patterns (natural characteristics), together with an assortment of anthropogenic impacts. The current chapter focuses on the ways in which geological and geochemical features (substrate properties) impinge on estuarine ecosystems, including modifications made as a result of contaminant bioavailability and toxicity. We also consider ways in which biological activity can mobility in estuaries through processes such as bioturbation and biodeposition.

Part IV - Sampling in Space-Time | Pp. 211-218

Global Quantities in Space-Time

Jaap J. de Gruijter; Marc F. P. Bierkens; Dick J. Brus; Martin Knotters

The physical structure of an estuary is governed by geological circumstance and shaped by a combination of river flows, tidal characteristics, current speeds and wave action. An over-riding constraint on estuarine biota is the nature of the variable salinity regime, since the capacity for ionic and osmotic regulation varies greatly between species and sets the limits for their distribution. Of equal importance, if the organism is to settle and survive, are the properties of deposits. Superimposed on these primary drivers are numerous other factors that influence estuarine biota, either directly or indirectly. These include light attenuation and oxygenation patterns (natural characteristics), together with an assortment of anthropogenic impacts. The current chapter focuses on the ways in which geological and geochemical features (substrate properties) impinge on estuarine ecosystems, including modifications made as a result of contaminant bioavailability and toxicity. We also consider ways in which biological activity can mobility in estuaries through processes such as bioturbation and biodeposition.

Part IV - Sampling in Space-Time | Pp. 219-248

Local Quantities in Space-Time

Jaap J. de Gruijter; Marc F. P. Bierkens; Dick J. Brus; Martin Knotters

The physical structure of an estuary is governed by geological circumstance and shaped by a combination of river flows, tidal characteristics, current speeds and wave action. An over-riding constraint on estuarine biota is the nature of the variable salinity regime, since the capacity for ionic and osmotic regulation varies greatly between species and sets the limits for their distribution. Of equal importance, if the organism is to settle and survive, are the properties of deposits. Superimposed on these primary drivers are numerous other factors that influence estuarine biota, either directly or indirectly. These include light attenuation and oxygenation patterns (natural characteristics), together with an assortment of anthropogenic impacts. The current chapter focuses on the ways in which geological and geochemical features (substrate properties) impinge on estuarine ecosystems, including modifications made as a result of contaminant bioavailability and toxicity. We also consider ways in which biological activity can mobility in estuaries through processes such as bioturbation and biodeposition.

Part IV - Sampling in Space-Time | Pp. 249-273