Catálogo de publicaciones - libros

Compartir en
redes sociales


Environmental Value Transfer: Issues and Methods

Ståle Navrud ; Richard Ready (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Environmental Economics; Microeconomics

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4081-8

ISBN electrónico

978-1-4020-5405-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2007

Cobertura temática

Tabla de contenidos

Can use and Non-use Values Be Transferred Across Countries?

D. KristÒFersson; S. Navrud

Various approaches to clean contaminated aquatic environments have been proposed. In recent years, natural attenuation has received increasing attention and it is generally accepted that microorganisms are the principal mediators of the natural attenuation of many pollutants. However, the complexity of environmental systems such as sediments requires a multifaceted approach to understand microbial processes and their potential. This is even more so under conditions, where the activity of pollutant degrading microorganisms is generally slow, partial and constrained spatially and/or temporally. Recent developments in molecular biology and genomics are offering tools to explore microbial processes at a level that encompasses the genetic characteristics of the local microbial players, culturable or not, as well as their organization into complex communities and their interactions both with each other and with the target chemicals. It is now possible to study microbes directly in their environments at the population level as well as at the single cell level and to link biology to geochemistry. Integrative knowledge from culture independent studies based on functional characters and assessment of the diversity and quantity of catabolic genes in response to pollution, will allow a deeper understanding of and a rational intervention in environmental processes. Moreover, the use of genomic libraries to retrieve genes from natural bacterial communities without cultivation will allow a breakthrough in accessing new microbial capabilities. In this chapter, the main features, advantages and limitations of these innovative approaches to the biomonitoring and analysis of intrinsic bioremediation potential of polluted environments and sediments are critically reviewed. Then, the potential of the same strategies in the integrated chemical, physical and biological monitoring and characterization of polluted sediments subjected to natural decontamination is shown through the description of the main results of case studies performed on a) polychlorinated biphenyl (PCB)-contaminated marine sediments of the Porto Marghera area of Venice Lagoon (Italy) in which the occurrence of PCB-reductive dechlorination processes has been demonstrated for the first time in the literature, b) sediments contaminated by chlorinated aliphatic hydrocarbons (CAHs) collected from different positions of the eutrophic river Zenne (Vilvoorde, Belgium), where they have been found to act as a natural biobarrier for the CAHs occurring in the groundwater that is passing through the sediment zone, hereby reducing the risk of surface water contamination, and c) other environmental contaminated systems subjected to ex-situ and in situ active bioremediation, where these processes are described on the basis of the experience accumulated in pilot and real-life systems.

Pp. 207-225

The Application of Bayesian Methods in Benefit Transfer

C. León; R. León; F. Vázquez-Polo

Various approaches to clean contaminated aquatic environments have been proposed. In recent years, natural attenuation has received increasing attention and it is generally accepted that microorganisms are the principal mediators of the natural attenuation of many pollutants. However, the complexity of environmental systems such as sediments requires a multifaceted approach to understand microbial processes and their potential. This is even more so under conditions, where the activity of pollutant degrading microorganisms is generally slow, partial and constrained spatially and/or temporally. Recent developments in molecular biology and genomics are offering tools to explore microbial processes at a level that encompasses the genetic characteristics of the local microbial players, culturable or not, as well as their organization into complex communities and their interactions both with each other and with the target chemicals. It is now possible to study microbes directly in their environments at the population level as well as at the single cell level and to link biology to geochemistry. Integrative knowledge from culture independent studies based on functional characters and assessment of the diversity and quantity of catabolic genes in response to pollution, will allow a deeper understanding of and a rational intervention in environmental processes. Moreover, the use of genomic libraries to retrieve genes from natural bacterial communities without cultivation will allow a breakthrough in accessing new microbial capabilities. In this chapter, the main features, advantages and limitations of these innovative approaches to the biomonitoring and analysis of intrinsic bioremediation potential of polluted environments and sediments are critically reviewed. Then, the potential of the same strategies in the integrated chemical, physical and biological monitoring and characterization of polluted sediments subjected to natural decontamination is shown through the description of the main results of case studies performed on a) polychlorinated biphenyl (PCB)-contaminated marine sediments of the Porto Marghera area of Venice Lagoon (Italy) in which the occurrence of PCB-reductive dechlorination processes has been demonstrated for the first time in the literature, b) sediments contaminated by chlorinated aliphatic hydrocarbons (CAHs) collected from different positions of the eutrophic river Zenne (Vilvoorde, Belgium), where they have been found to act as a natural biobarrier for the CAHs occurring in the groundwater that is passing through the sediment zone, hereby reducing the risk of surface water contamination, and c) other environmental contaminated systems subjected to ex-situ and in situ active bioremediation, where these processes are described on the basis of the experience accumulated in pilot and real-life systems.

Pp. 227-239

Improving the Practice of Benefits Transfer: A Preference Calibration Approach

S. Pattanayak; V. K. Smith; G. Van Houtven

Various approaches to clean contaminated aquatic environments have been proposed. In recent years, natural attenuation has received increasing attention and it is generally accepted that microorganisms are the principal mediators of the natural attenuation of many pollutants. However, the complexity of environmental systems such as sediments requires a multifaceted approach to understand microbial processes and their potential. This is even more so under conditions, where the activity of pollutant degrading microorganisms is generally slow, partial and constrained spatially and/or temporally. Recent developments in molecular biology and genomics are offering tools to explore microbial processes at a level that encompasses the genetic characteristics of the local microbial players, culturable or not, as well as their organization into complex communities and their interactions both with each other and with the target chemicals. It is now possible to study microbes directly in their environments at the population level as well as at the single cell level and to link biology to geochemistry. Integrative knowledge from culture independent studies based on functional characters and assessment of the diversity and quantity of catabolic genes in response to pollution, will allow a deeper understanding of and a rational intervention in environmental processes. Moreover, the use of genomic libraries to retrieve genes from natural bacterial communities without cultivation will allow a breakthrough in accessing new microbial capabilities. In this chapter, the main features, advantages and limitations of these innovative approaches to the biomonitoring and analysis of intrinsic bioremediation potential of polluted environments and sediments are critically reviewed. Then, the potential of the same strategies in the integrated chemical, physical and biological monitoring and characterization of polluted sediments subjected to natural decontamination is shown through the description of the main results of case studies performed on a) polychlorinated biphenyl (PCB)-contaminated marine sediments of the Porto Marghera area of Venice Lagoon (Italy) in which the occurrence of PCB-reductive dechlorination processes has been demonstrated for the first time in the literature, b) sediments contaminated by chlorinated aliphatic hydrocarbons (CAHs) collected from different positions of the eutrophic river Zenne (Vilvoorde, Belgium), where they have been found to act as a natural biobarrier for the CAHs occurring in the groundwater that is passing through the sediment zone, hereby reducing the risk of surface water contamination, and c) other environmental contaminated systems subjected to ex-situ and in situ active bioremediation, where these processes are described on the basis of the experience accumulated in pilot and real-life systems.

Pp. 241-260

How Much Is Enough? The Value Of Information From Benefit Transfers In A Policy Context

D. Barton

Various approaches to clean contaminated aquatic environments have been proposed. In recent years, natural attenuation has received increasing attention and it is generally accepted that microorganisms are the principal mediators of the natural attenuation of many pollutants. However, the complexity of environmental systems such as sediments requires a multifaceted approach to understand microbial processes and their potential. This is even more so under conditions, where the activity of pollutant degrading microorganisms is generally slow, partial and constrained spatially and/or temporally. Recent developments in molecular biology and genomics are offering tools to explore microbial processes at a level that encompasses the genetic characteristics of the local microbial players, culturable or not, as well as their organization into complex communities and their interactions both with each other and with the target chemicals. It is now possible to study microbes directly in their environments at the population level as well as at the single cell level and to link biology to geochemistry. Integrative knowledge from culture independent studies based on functional characters and assessment of the diversity and quantity of catabolic genes in response to pollution, will allow a deeper understanding of and a rational intervention in environmental processes. Moreover, the use of genomic libraries to retrieve genes from natural bacterial communities without cultivation will allow a breakthrough in accessing new microbial capabilities. In this chapter, the main features, advantages and limitations of these innovative approaches to the biomonitoring and analysis of intrinsic bioremediation potential of polluted environments and sediments are critically reviewed. Then, the potential of the same strategies in the integrated chemical, physical and biological monitoring and characterization of polluted sediments subjected to natural decontamination is shown through the description of the main results of case studies performed on a) polychlorinated biphenyl (PCB)-contaminated marine sediments of the Porto Marghera area of Venice Lagoon (Italy) in which the occurrence of PCB-reductive dechlorination processes has been demonstrated for the first time in the literature, b) sediments contaminated by chlorinated aliphatic hydrocarbons (CAHs) collected from different positions of the eutrophic river Zenne (Vilvoorde, Belgium), where they have been found to act as a natural biobarrier for the CAHs occurring in the groundwater that is passing through the sediment zone, hereby reducing the risk of surface water contamination, and c) other environmental contaminated systems subjected to ex-situ and in situ active bioremediation, where these processes are described on the basis of the experience accumulated in pilot and real-life systems.

Pp. 261-282

Lessons Learned for Environmental Value Transfer

S. Navrud; R. Ready

Various approaches to clean contaminated aquatic environments have been proposed. In recent years, natural attenuation has received increasing attention and it is generally accepted that microorganisms are the principal mediators of the natural attenuation of many pollutants. However, the complexity of environmental systems such as sediments requires a multifaceted approach to understand microbial processes and their potential. This is even more so under conditions, where the activity of pollutant degrading microorganisms is generally slow, partial and constrained spatially and/or temporally. Recent developments in molecular biology and genomics are offering tools to explore microbial processes at a level that encompasses the genetic characteristics of the local microbial players, culturable or not, as well as their organization into complex communities and their interactions both with each other and with the target chemicals. It is now possible to study microbes directly in their environments at the population level as well as at the single cell level and to link biology to geochemistry. Integrative knowledge from culture independent studies based on functional characters and assessment of the diversity and quantity of catabolic genes in response to pollution, will allow a deeper understanding of and a rational intervention in environmental processes. Moreover, the use of genomic libraries to retrieve genes from natural bacterial communities without cultivation will allow a breakthrough in accessing new microbial capabilities. In this chapter, the main features, advantages and limitations of these innovative approaches to the biomonitoring and analysis of intrinsic bioremediation potential of polluted environments and sediments are critically reviewed. Then, the potential of the same strategies in the integrated chemical, physical and biological monitoring and characterization of polluted sediments subjected to natural decontamination is shown through the description of the main results of case studies performed on a) polychlorinated biphenyl (PCB)-contaminated marine sediments of the Porto Marghera area of Venice Lagoon (Italy) in which the occurrence of PCB-reductive dechlorination processes has been demonstrated for the first time in the literature, b) sediments contaminated by chlorinated aliphatic hydrocarbons (CAHs) collected from different positions of the eutrophic river Zenne (Vilvoorde, Belgium), where they have been found to act as a natural biobarrier for the CAHs occurring in the groundwater that is passing through the sediment zone, hereby reducing the risk of surface water contamination, and c) other environmental contaminated systems subjected to ex-situ and in situ active bioremediation, where these processes are described on the basis of the experience accumulated in pilot and real-life systems.

Pp. 283-290