Catálogo de publicaciones - libros
Computer Aided Verification: 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings
Kousha Etessami ; Sriram K. Rajamani (eds.)
En conferencia: 17º International Conference on Computer Aided Verification (CAV) . Edinburgh, United Kingdom . July 6, 2005 - July 10, 2005
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Logics and Meanings of Programs; Software Engineering; Mathematical Logic and Formal Languages; Artificial Intelligence (incl. Robotics); Logic Design
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-27231-1
ISBN electrónico
978-3-540-31686-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Tabla de contenidos
doi: 10.1007/11513988_51
Automated Assume-Guarantee Reasoning for Simulation Conformance
Sagar Chaki; Edmund Clarke; Nishant Sinha; Prasanna Thati
We address the issue of efficiently automating assume-guarantee reasoning for simulation conformance between finite state systems and specifications. We focus on a non-circular assume-guarantee proof rule, and show that there is a weakest assumption that can be represented canonically by a deterministic tree automata (DTA). We then present an algorithm that learns this DTA automatically in an incremental fashion, in time that is polynomial in the number of states in the equivalent minimal DTA. The algorithm assumes a teacher that can answer membership and candidate queries pertaining to the language of the unknown DTA. We show how the teacher can be implemented using a model checker. We have implemented this framework in the CFRT toolkit and we report encouraging results (over an order of magnitude improvement in memory consumption) on non-trivial benchmarks.
- Applications of Learning | Pp. 534-547
doi: 10.1007/11513988_52
Symbolic Compositional Verification by Learning Assumptions
Rajeev Alur; P. Madhusudan; Wonhong Nam
The verification problem for a system consisting of components can be decomposed into simpler subproblems for the components using assume-guarantee reasoning. However, such compositional reasoning requires user guidance to identify appropriate assumptions for components. In this paper, we propose an automated solution for discovering assumptions based on the algorithm for active learning of regular languages. We present a symbolic implementation of the learning algorithm, and incorporate it in the model checker NuSMV. Our experiments demonstrate significant savings in the computational requirements of symbolic model checking.
- Applications of Learning | Pp. 548-562