Catálogo de publicaciones - libros

Compartir en
redes sociales


Foundations of Intelligent Systems: 16th International Symposium, ISMIS 2006, Bari, Italy, September 27-29, 2006, Proceedings

Floriana Esposito ; Zbigniew W. Raś ; Donato Malerba ; Giovanni Semeraro (eds.)

En conferencia: 16º International Symposium on Methodologies for Intelligent Systems (ISMIS) . Bari, Italy . September 27, 2006 - September 29, 2006

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Artificial Intelligence (incl. Robotics); Information Storage and Retrieval; Information Systems Applications (incl. Internet); Database Management; User Interfaces and Human Computer Interaction; Computation by Abstract Devices

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-45764-0

ISBN electrónico

978-3-540-45766-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Tabla de contenidos

Representation Interest Point Using Empirical Mode Decomposition and Independent Components Analysis

Dongfeng Han; Wenhui Li; Xiaosuo Lu; Yi Wang; Ming Li

This paper presents a new interest point descriptors representation method based on empirical mode decomposition (EMD) and independent components analysis (ICA). The proposed algorithm first finds the characteristic scale and the location of the interest points using Harris-Laplacian interest point detector. We then apply the Hilbert transform to each component and get the amplitude and the instantaneous frequency as the feature vectors. Then independent components analysis is used to model the image subspace and reduces the dimension of the feature vectors. The aim of this algorithm is to find a meaningful image subspace and more compact descriptors. Combination the proposed descriptors with an effective interest point detector, the proposed algorithm has a more accurate matching rate besides the robustness towards image deformations.

- Knowledge Representation and Integration | Pp. 350-358

Integration of Graph Based Authorization Policies

Chun Ruan; Vijay Varadharajan

In a distributed environment, authorizations are usually physically stored in several computers connected by a network. Each computer may have its own local policies which could conflict with the others. Therefore how to make a global decision from the local authorization policies is a crucial and practical problem for a distributed system. In this paper, three general integration models based on the degrees of node autonomy are proposed, and different strategies of integrating the local policies into the global policies in each model are systematically discussed. The discussion is based on the weighted authorization graph model that we proposed before.

- Knowledge Representation and Integration | Pp. 359-368

Supporting Visual Exploration of Discovered Association Rules Through Multi-Dimensional Scaling

Margherita Berardi; Annalisa Appice; Corrado Loglisci; Pietro Leo

Association rules are typically evaluated in terms of support and confidence measures, which ensure that discovered rules have enough positive evidence. However, in real-world applications, even considering only those rules with high confidence and support it is not true that all of them are interesting. It may happen that the presentation of all discovered rules can discourage users from interpreting them in order to find nuggets of knowledge. Association rules interpretation can benefit from discovering group of “similar” rules, where (dis)similarity is estimated on the basis of syntactic or semantic characteristics. In this paper, we resort to the multi-dimensional scaling to support a visual exploration of association rules by means of bi-dimensional scatter-plots. An application in the domain of biomedical literature is reported. Results show that the use of this visualization technique is beneficial.

- Knowledge Discovery and Data Mining | Pp. 369-378

Evaluating Learning Algorithms for a Rule Evaluation Support Method Based on Objective Rule Evaluation Indices

Hidenao Abe; Shusaku Tsumoto; Miho Ohsaki; Takahira Yamaguchi

In this paper, we present an evaluation of learning algorithms of a novel rule evaluation support method for post-processing of mined results with rule evaluation models based on objective indices. Post-processing of mined results is one of the key processes in a data mining process. However, it is difficult for human experts to completely evaluate several thousands of rules from a large dataset with noises. To reduce the costs in such rule evaluation task, we have developed the rule evaluation support method with rule evaluation models which learn from a dataset. This dataset comprises objective indices for mined classification rules and evaluations by a human expert for each rule. To evaluate performances of learning algorithms for constructing the rule evaluation models, we have done a case study on the meningitis data mining as an actual problem. Furthermore, we have also evaluated our method with five rule sets obtained from five UCI datasets.

- Knowledge Discovery and Data Mining | Pp. 379-388

Quality Assessment of -NN Multi-label Classification for Music Data

Alicja Wieczorkowska; Piotr Synak

This paper investigates problems related to quality assessment in the case of multi-label automatic classification of data, using -Nearest Neighbor classifier. Various methods of assigning classes, as well as measures of assessing the quality of classification results are proposed and investigated both theoretically and in practical tests. In our experiments, audio data representing short music excerpts of various emotional contents were parameterized and then used for training and testing. Class labels represented emotions assigned to a given audio excerpt. The experiments show how various measures influence quality assessment of automatic classification of multi-label data.

- Knowledge Discovery and Data Mining | Pp. 389-398

Effective Mining of Fuzzy Multi-Cross-Level Weighted Association Rules

Mehmet Kaya; Reda Alhajj

This paper addresses fuzzy weighted multi-cross-level association rule mining. We define a fuzzy data cube, which facilitates for handling quantitative values of dimensional attributes, and hence allows for mining fuzzy association rules at different levels. A method is introduced for single dimension fuzzy weighted association rules mining. To the best of our knowledge, none of the studies described in the literature considers weighting the internal nodes in such taxonomy. Only items appearing in transactions are weighted to find more specific and important knowledge. But, sometimes weighting internal nodes on a tree may be more meaningful and enough. We compared the proposed approach to an existing approach that does not utilize fuzziness. The reported experimental results demonstrate the effectiveness and applicability of the proposed fuzzy weighted multi-cross-level mining approach.

- Knowledge Discovery and Data Mining | Pp. 399-408

A Methodological Contribution to Music Sequences Analysis

Daniele P. Radicioni; Marco Botta

In this paper we present a stepwise method for the analysis of musical sequences. The starting point is either a MIDI file or the score of a piece of music. The result is a set of likely themes and motifs. The method relies on a pitch intervals representation of music and an event discovery system that extracts significant and repeated patterns from sequences. We report and discuss the results of a preliminary experimentation, and outline future enhancements.

- Knowledge Discovery and Data Mining | Pp. 409-418

Towards a Framework for Inductive Querying

Jeroen S. de Bruin

Despite many recent developments, there are still a number of central issues in inductive databases that need more research. In this paper we address two of them. The first issue is about how the discovery of patterns can use existing patterns. We will give a concrete example showing an advantage of mining both the patterns and the data. The second issue we consider is the actual implementation of inductive databases. We will propose an architectural framework for inductive databases and show how existing databases can be incorporated.

- Knowledge Discovery and Data Mining | Pp. 419-424

Towards Constrained Co-clustering in Ordered 0/1 Data Sets

Ruggero G. Pensa; Céline Robardet; Jean-François Boulicaut

Within 0/1 data, co-clustering provides a collection of bi-clusters, i.e., linked clusters for both objects and Boolean properties. Beside the classical need for grouping quality optimization, one can also use user-defined constraints to capture subjective interestingness aspects and thus to improve bi-cluster relevancy. We consider the case of 0/1 data where at least one dimension is ordered, e.g., objects denotes time points, and we introduce co-clustering constrained by interval constraints. Exploiting such constraints during the intrinsically heuristic clustering process is challenging. We propose one major step in this direction where bi-clusters are computed from collections of local patterns. We provide an experimental validation on two temporal gene expression data sets.

- Knowledge Discovery and Data Mining | Pp. 425-434

A Comparative Analysis of Clustering Methodology and Application for Market Segmentation: K-Means, SOM and a Two-Level SOM

Sang-Chul Lee; Ja-Chul Gu; Yung-Ho Suh

The purpose of our research is to identify the critical variables, to evaluate the performance of variable selection, to evaluate the performance of a two-level SOM and to implement this methodology into Asian online game market segmentation. Conclusively, our results suggest that weight-based variable selection is more useful for market segmentation than full-based and SEM-based variable selection. Additionally, a two-level SOM is more accurate in classification than K-means and SOM. The critical segmentation variables and the characteristics of target customers were different among countries. Therefore, online game companies should develop diverse marketing strategies based on characteristics of their target customers using research framework we propose.

- Knowledge Discovery and Data Mining | Pp. 435-444