Catálogo de publicaciones - revistas

Compartir en
redes sociales


Quantum Science and Technology

Resumen/Descripción – provisto por la editorial en inglés
A multidisciplinary, high impact journal devoted to publishing research of the highest quality and significance covering the science and application of all quantum-enabled technologies.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ago. 2016 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN electrónico

2058-9565

Editor responsable

IOP Publishing (IOP)

País de edición

Estados Unidos

Fecha de publicación

Tabla de contenidos

An ultracold molecular beam for testing fundamental physics

X AlauzeORCID; J LimORCID; M A Trigatzis; S Swarbrick; F J Collings; N J FitchORCID; B E SauerORCID; M R TarbuttORCID

<jats:title>Abstract</jats:title> <jats:p>We use two-dimensional transverse laser cooling to produce an ultracold beam of YbF molecules. Through experiments and numerical simulations, we study how the cooling is influenced by the polarization configuration, laser intensity, laser detuning and applied magnetic field. The ultracold part of the beam contains more than 2 × 10<jats:sup>5</jats:sup> molecules per shot and has a temperature below 200 <jats:italic>μ</jats:italic>K, and the cooling yields a 300-fold increase in the brightness of the beam. The method can improve the precision of experiments that use molecules to test fundamental physics. In particular, the beam is suitable for measuring the electron electric dipole moment with a statistical precision better than 10<jats:sup>−30</jats:sup> e cm.</jats:p>

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 044005

How to define quantum mean-field solvable Hamiltonians using Lie algebras

Artur F IzmaylovORCID; Tzu-Ching Yen

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 044006

CeNTREX: a new search for time-reversal symmetry violation in the 205Tl nucleus

O GrasdijkORCID; O Timgren; J Kastelic; T Wright; S Lamoreaux; D DeMille; K Wenz; M Aitken; T Zelevinsky; T Winick; D Kawall

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 044007

Quantum sensing of the electron electric dipole moment using ultracold entangled Fr atoms

T AokiORCID; R SreekanthamORCID; B K SahooORCID; Bindiya AroraORCID; A KastbergORCID; T SatoORCID; H IkedaORCID; N OkamotoORCID; Y ToriiORCID; T HayamizuORCID; K NakamuraORCID; S NagaseORCID; M OhtsukaORCID; H NagahamaORCID; N OzawaORCID; M SatoORCID; T NakashitaORCID; K YamaneORCID; K S TanakaORCID; K HaradaORCID; H KawamuraORCID; T InoueORCID; A UchiyamaORCID; A HatakeyamaORCID; A TakamineORCID; H UenoORCID; Y IchikawaORCID; Y MatsudaORCID; H HabaORCID; Y SakemiORCID

<jats:title>Abstract</jats:title> <jats:p>We propose a method to measure the electron electric dipole moment (eEDM) using ultracold entangled francium (Fr) atoms trapped in an optical lattice, yielding an uncertainty below the standard quantum limit. Among the alkali atoms, Fr offers the largest enhancement factor to the eEDM. With a Fr based experiment, quantum sensing using quantum entangled states could enable a search for the eEDM at a level below 10<jats:sup>−30</jats:sup> <jats:italic>e</jats:italic>cm. We estimate statistical and systematic errors attached to the proposed measurement scheme based on this quantum sensing technique. A successful quantum sensing of the eEDM could enable the exploration of new physics beyond the standard model of particle physics.</jats:p>

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 044008

An open-endcap blade trap for radial-2D ion crystals

Yuanheng Xie; Jiafeng Cui; Marissa D’Onofrio; A J Rasmusson; Stephen W Howell; Philip RichermeORCID

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 044009

Native multiqubit Toffoli gates on ion trap quantum computers

Nilesh GoelORCID; J K FreericksORCID

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 044010

Software tools for quantum control: improving quantum computer performance through noise and error suppression

Harrison BallORCID; Michael J Biercuk; Andre R R Carvalho; Jiayin Chen; Michael HushORCID; Leonardo A De Castro; Li Li; Per J Liebermann; Harry J Slatyer; Claire Edmunds; Virginia Frey; Cornelius Hempel; Alistair Milne

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 044011

Modulation leakage vulnerability in continuous-variable quantum key distribution

Nitin JainORCID; Ivan DerkachORCID; Hou-Man ChinORCID; Radim FilipORCID; Ulrik L AndersenORCID; Vladyslav C UsenkoORCID; Tobias GehringORCID

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 045001

Storage capacity and learning capability of quantum neural networks

Maciej LewensteinORCID; Aikaterini GratseaORCID; Andreu Riera-CampenyORCID; Albert AloyORCID; Valentin KasperORCID; Anna SanperaORCID

<jats:title>Abstract</jats:title> <jats:p>We study the storage capacity of quantum neural networks (QNNs), described by completely positive trace preserving (CPTP) maps acting on an <jats:italic>N</jats:italic>-dimensional Hilbert space. We demonstrate that attractor QNNs can store in a non-trivial manner up to <jats:italic>N</jats:italic> linearly independent pure states. For <jats:italic>n</jats:italic> qubits, QNNs can reach an exponential storage capacity, <jats:inline-formula> <jats:tex-math><?CDATA $\mathcal{O}({2}^{n})$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi mathvariant="script">O</mml:mi> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow> <mml:msup> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="qstac070fieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, clearly outperforming standard classical neural networks whose storage capacity scales linearly with the number of neurons <jats:italic>n</jats:italic>. We estimate, employing the Gardner program, the relative volume of CPTP maps with <jats:italic>M</jats:italic> ⩽ <jats:italic>N</jats:italic> stationary states and show that this volume decreases exponentially with <jats:italic>M</jats:italic> and shrinks to zero for <jats:italic>M</jats:italic> ⩾ <jats:italic>N</jats:italic> + 1. We generalize our results to QNNs storing mixed states as well as input–output relations for feed-forward QNNs. Our approach opens the path to relate storage properties of QNNs to the quantum features of the input–output states. This paper is dedicated to the memory of Peter Wittek.</jats:p>

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 045002

Simulating quench dynamics on a digital quantum computer with data-driven error mitigation

Alejandro SopenaORCID; Max Hunter GordonORCID; Germán SierraORCID; Esperanza LópezORCID

Palabras clave: Electrical and Electronic Engineering; Physics and Astronomy (miscellaneous); Materials Science (miscellaneous); Atomic and Molecular Physics, and Optics.

Pp. 045003