Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal (ApJ)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 1995 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0004-637X

ISSN electrónico

1538-4357

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Supercritical Accretion of Stellar-mass Compact Objects in Active Galactic Nuclei

Zhen PanORCID; Huan YangORCID

<jats:title>Abstract</jats:title> <jats:p>Accretion disks of active galactic nuclei (AGNs) have been proposed as promising sites for producing both (stellar-mass) compact object mergers and extreme mass ratio inspirals. Along with disk-assisted migration, ambient gas inevitably accretes onto compact objects. In previous studies, it was commonly assumed that either an Eddington rate or a Bondi rate takes place, although they can differ by several orders of magnitude. As a result, the mass and spin evolution of compact objects within AGN disks are essentially unknown. In this work, we construct a relativistic supercritical inflow–outflow model for black hole (BH) accretion. We show that the radiation efficiency of the supercritical accretion of a stellar-mass BH (sBH) is generally too low to explain the proposed electromagnetic counterpart of GW 190521. Applying this model to sBHs embedded in AGN disks, we find that, although the gas inflow rates at Bondi radii of these sBHs are commonly highly super-Eddington, a large fraction of inflowing gas eventually escapes as outflows so that only a small fraction accretes onto the sBH, resulting in mildly super-Eddington BH absorption in most cases. We also apply this model to neutron stars (NSs) and white dwarfs (WDs) in AGN disks. It turns out to be difficult for WDs to grow to the Chandrasekhar limit via accretion because WDs are spun up more efficiently to reach the shedding limit before the Chandrasekhar limit. For NSs accretion-induced collapse is possible if NS magnetic fields are sufficiently strong to keep the NS slowly rotating during accretion.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 173

Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy

Jay S. ChittidiORCID; Sunil SimhaORCID; Alexandra Mannings; J. Xavier ProchaskaORCID; Stuart D. RyderORCID; Marc RafelskiORCID; Marcel NeelemanORCID; Jean-Pierre MacquartORCID; Nicolas TejosORCID; Regina A. JorgensonORCID; Cherie K. DayORCID; Lachlan MarnochORCID; Shivani BhandariORCID; Adam T. DellerORCID; Hao QiuORCID; Keith W. BannisterORCID; Ryan M. ShannonORCID; Kasper E. HeintzORCID

<jats:title>Abstract</jats:title> <jats:p>We present a high-resolution analysis of the host galaxy of fast radio burst (FRB) 190608, an SB(r)c galaxy at <jats:italic>z</jats:italic> = 0.11778 (hereafter HG 190608), to dissect its local environment and its contributions to the FRB properties. Our Hubble Space Telescope Wide Field Camera 3 ultraviolet and visible light image reveals that the subarcsecond localization of FRB 190608 is coincident with a knot of star formation (Σ<jats:sub>SFR</jats:sub> = 1.5 × 10<jats:sup>−2</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup> kpc<jats:sup>−2</jats:sup>) in the northwest spiral arm of HG 190608. Using H<jats:italic>β</jats:italic> emission present in our Keck Cosmic Web Imager integral field spectrum of the galaxy with a surface brightness of <jats:inline-formula> <jats:tex-math> <?CDATA ${\mu }_{{\rm{H}}\beta }=(3.36\pm 0.21)\times {10}^{-17}\,\mathrm{erg}\,{{\rm{s}}}^{-1}\,{\mathrm{cm}}^{-2}\,{\mathrm{arcsec}}^{-2}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> <mml:mi>β</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>3.36</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.21</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:mi>erg</mml:mi> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi>cm</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi>arcsec</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2818ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, we infer an extinction-corrected H<jats:italic>α</jats:italic> surface brightness and compute a dispersion measure (DM) from the interstellar medium of HG 190608 of DM<jats:sub>Host,ISM</jats:sub> = 94 ± 38 pc cm<jats:sup>−3</jats:sup>. The galaxy rotates with a circular velocity <jats:italic>v</jats:italic> <jats:sub>circ</jats:sub> = 141 ± 8 km s<jats:sup>−1</jats:sup> at an inclination <jats:italic>i</jats:italic> <jats:sub>gas</jats:sub> = 37° ± 3°, giving a dynamical mass <jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{\mathrm{halo}}^{\mathrm{dyn}}\approx {10}^{11.96\pm 0.08}\,{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>halo</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>dyn</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo>≈</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>11.96</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.08</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2818ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>. This implies a halo contribution to the DM of DM<jats:sub>Host,Halo</jats:sub> = 55 ± 25 pc cm<jats:sup>−3</jats:sup> subject to assumptions on the density profile and fraction of baryons retained. From the galaxy rotation curve, we infer a bar-induced pattern speed of Ω<jats:sub> <jats:italic>p</jats:italic> </jats:sub> = 34 ± 6 km s<jats:sup>−1</jats:sup> kpc<jats:sup>−1</jats:sup> using linear resonance theory. We then calculate the maximum time since star formation for a progenitor using the furthest distance to the arm’s leading edge within the localization, and find <jats:inline-formula> <jats:tex-math> <?CDATA ${t}_{\mathrm{enc}}={21}_{-6}^{+25}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>enc</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>21</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>25</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2818ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> Myr. Unlike previous high-resolution studies of FRB environments, we find no evidence of disturbed morphology, emission, or kinematics for FRB 190608.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 173

A Solar Source of Alfvénic Magnetic Field Switchbacks: In Situ Remnants of Magnetic Funnels on Supergranulation Scales

S. D. BaleORCID; T. S. HorburyORCID; M. VelliORCID; M. I. DesaiORCID; J. S. HalekasORCID; M. D. McManusORCID; O. PanasencoORCID; S. T. BadmanORCID; T. A. BowenORCID; B. D. G. ChandranORCID; J. F. DrakeORCID; J. C. KasperORCID; R. LakerORCID; A. MalletORCID; L. Matteini; T. D. PhanORCID; N. E. RaouafiORCID; J. SquireORCID; L. D. WoodhamORCID; T. WoolleyORCID

<jats:title>Abstract</jats:title> <jats:p>One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvénic magnetic field reversals termed <jats:italic>switchbacks</jats:italic>. These <jats:inline-formula> <jats:tex-math> <?CDATA $\delta {B}_{R}/B\sim { \mathcal O }(1$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>δ</mml:mi> <mml:msub> <mml:mrow> <mml:mi>B</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>B</mml:mi> <mml:mo>∼</mml:mo> <mml:mi mathvariant="italic"></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2d8cieqn1.gif" xlink:type="simple" /> </jats:inline-formula>) fluctuations occur over a range of timescales and in <jats:italic>patches</jats:italic> separated by intervals of quiet, radial magnetic field. We use measurements from PSP to demonstrate that patches of switchbacks are localized within the extensions of plasma structures originating at the base of the corona. These structures are characterized by an increase in alpha particle abundance, Mach number, plasma <jats:italic>β</jats:italic> and pressure, and by depletions in the magnetic field magnitude and electron temperature. These intervals are in pressure balance, implying stationary spatial structure, and the field depressions are consistent with overexpanded flux tubes. The structures are asymmetric in Carrington longitude with a steeper leading edge and a small (∼1°) edge of hotter plasma and enhanced magnetic field fluctuations. Some structures contain suprathermal ions to ∼85 keV that we argue are the energetic tail of the solar wind alpha population. The structures are separated in longitude by angular scales associated with supergranulation. This suggests that these switchbacks originate near the leading edge of the diverging magnetic field funnels associated with the network magnetic field—the primary wind sources. We propose an origin of the magnetic field switchbacks, hot plasma and suprathermals, alpha particles in interchange reconnection events just above the solar transition region and our measurements represent the extended regions of a turbulent outflow exhaust.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 174

Constraining Progenitors of Observed Low-mass X-ray Binaries Using Convection and Rotation-Boosted Magnetic Braking

Kenny X. VanORCID; Natalia IvanovaORCID

<jats:title>Abstract</jats:title> <jats:p>We present a new method for constraining the mass transfer evolution of low-mass X-ray binaries (LMXBs)—a reverse population synthesis technique. This is done using the detailed 1D stellar evolution code <jats:monospace>MESA</jats:monospace> (Modules for Experiments in Stellar Astrophysics) to evolve a high-resolution grid of binary systems spanning a comprehensive range of initial donor masses and orbital periods. We use the recently developed convection and rotation-boosted (CARB) magnetic braking scheme. The CARB magnetic braking scheme is the only magnetic braking prescription capable of reproducing an entire sample of well-studied persistent LMXBs—those with mass ratios, periods, and mass transfer rates that have been observationally determined. Using the reverse population synthesis technique, where we follow any simulated system that successfully reproduces an observed LMXB backward, we have constrained possible progenitors for each observed well-studied persistent LMXB. We also determined that the minimum number of LMXB formations in the Milky Way is 1500 per Gyr if we exclude Cyg X-2. For Cyg X-2, the most likely formation rate is 9000 LMXB Gyr<jats:sup>−1</jats:sup>. The technique we describe can be applied to any observed LMXB with well-constrained mass ratio, period, and mass transfer rate. With the upcoming GAIA DR3 containing information on binary systems, this technique can be applied to the data release to search for progenitors of observed persistent LMXBs.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 174

A Reflection Model with a Radial Disk Density Profile

Askar B. Abdikamalov; Dimitry Ayzenberg; Cosimo BambiORCID; Honghui Liu; Ashutosh TripathiORCID

<jats:title>Abstract</jats:title> <jats:p>In this paper we present <jats:monospace>relxilldgrad</jats:monospace>_<jats:monospace>nk</jats:monospace>, a relativistic reflection model in which the electron density of the accretion disk is allowed to have a radial power-law profile. The ionization parameter also has a nonconstant radial profile and is calculated self-consistently from the electron density and the emissivity. We show the impact of the implementation of the electron density gradient in our model by analyzing a NuSTAR spectrum of the Galactic black hole in EXO 1846–031 during its last outburst in 2019 and a putative future observation of the same source with Athena and eXTP. For the NuSTAR spectrum, we find that the new model provides a better fit, but there is no significant difference in the estimation of the model parameters. For the Athena+eXTP simulation, we find that a model without a disk density profile is unsuitable to test the spacetime metric around the compact object in the sense that modeling uncertainties can incorrectly lead to finding a nonvanishing deformation from the Kerr solution.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 175

Mass-ratio and Magnetic Flux Dependence of Modulated Accretion from Circumbinary Disks

Scott C. NobleORCID; Julian H. KrolikORCID; Manuela CampanelliORCID; Yosef ZlochowerORCID; Bruno C. Mundim; Hiroyuki NakanoORCID; Miguel ZilhãoORCID

<jats:title>Abstract</jats:title> <jats:p>Accreting supermassive binary black holes (SMBBHs) are potential multimessenger sources because they emit both gravitational-wave and electromagnetic (EM) radiation. Past work has shown that their EM output may be periodically modulated by an asymmetric density distribution in the circumbinary disk, often called an “overdensity” or “lump;” this modulation could possibly be used to identify a source as a binary. We explore the sensitivity of the overdensity to SMBBH mass ratio and magnetic flux through the accretion disk. We find that the relative amplitude of the overdensity and its associated EM periodic signal both degrade with diminishing mass ratio, vanishing altogether somewhere between 1:2 and 1:5. Greater magnetization also weakens the lump and any modulation of the light output. We develop a model to describe how lump formation results from internal stress degrading faster in the lump region than it can be rejuvenated through accretion inflow, and predicts a threshold value in specific internal stress below which lump formation should occur and which all our lump-forming simulations satisfy. Thus, detection of such a modulation would provide a constraint on both mass ratio and magnetic flux piercing the accretion flow.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 175

Simulating Solar Maximum Conditions Using the Alfvén Wave Solar Atmosphere Model (AWSoM)

Nishtha SachdevaORCID; Gábor TóthORCID; Ward B. ManchesterORCID; Bart van der HolstORCID; Zhenguang HuangORCID; Igor V. SokolovORCID; Lulu ZhaoORCID; Qusai Al ShidiORCID; Yuxi ChenORCID; Tamas I. GombosiORCID; Carl J. HenneyORCID; Diego G. LloverasORCID; Alberto M. VásquezORCID

<jats:title>Abstract</jats:title> <jats:p>To simulate solar coronal mass ejections (CMEs) and predict their time of arrival and geomagnetic impact, it is important to accurately model the background solar wind conditions in which CMEs propagate. We use the Alfvén Wave Solar atmosphere Model (AWSoM) within the the Space Weather Modeling Framework to simulate solar maximum conditions during two Carrington rotations and produce solar wind background conditions comparable to the observations. We describe the inner boundary conditions for AWSoM using the ADAPT global magnetic maps and validate the simulated results with EUV observations in the low corona and measured plasma parameters at L1 as well as at the position of the Solar Terrestrial Relations Observatory spacecraft. This work complements our prior AWSoM validation study for solar minimum conditions and shows that during periods of higher magnetic activity, AWSoM can reproduce the solar plasma conditions (using properly adjusted photospheric Poynting flux) suitable for providing proper initial conditions for launching CMEs.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 176

The Magnetic Mechanism for Hotspot Reversals in Hot Jupiter Atmospheres

A. W. HindleORCID; P. J. BushbyORCID; T. M. RogersORCID

<jats:title>Abstract</jats:title> <jats:p>Magnetically driven hotspot variations (which are tied to atmospheric wind variations) in hot Jupiters are studied using nonlinear numerical simulations of a shallow-water magnetohydrodynamic (SWMHD) system and a linear analysis of equatorial SWMHD waves. In hydrodynamic models, mid-to-high-latitude geostrophic circulations are known to cause a net west-to-east equatorial thermal energy transfer, which drives hotspot offsets eastward. We find that a strong toroidal magnetic field can obstruct these energy transporting circulations. This results in winds aligning with the magnetic field and generates westward Lorentz force accelerations in hotspot regions, ultimately causing westward hotspot offsets. In the subsequent linear analysis we find that this reversal mechanism has an equatorial wave analogy in terms of the planetary-scale equatorial magneto-Rossby waves. We compare our findings to three-dimensional MHD simulations, both quantitatively and qualitatively, identifying the link between the mechanics of magnetically driven hotspot and wind reversals. We use the developed theory to identify physically motivated reversal criteria, which can be used to place constraints on the magnetic fields of ultra-hot Jupiters with observed westward hotspots.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 176

Stellar Rotation of T Tauri Stars in the Orion Star-forming Complex

Javier SernaORCID; Jesus HernandezORCID; Marina KounkelORCID; Ezequiel Manzo-MartínezORCID; Alexandre Roman-LopesORCID; Carlos G. Román-ZúñigaORCID; Maria Gracia Batista; Giovanni PinzónORCID; Nuria CalvetORCID; Cesar BriceñoORCID; Mauricio TapiaORCID; Genaro SuárezORCID; Karla Peña RamírezORCID; Keivan G. StassunORCID; Kevin CoveyORCID; J. Vargas-GonzálezORCID; José G. Fernández-TrincadoORCID

<jats:title>Abstract</jats:title> <jats:p>We present a large-scale study of stellar rotation for T Tauri stars in the Orion star-forming complex. We use the projected rotational velocity (<jats:inline-formula> <jats:tex-math> <?CDATA $v\sin (i)$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>v</mml:mi> <mml:mi>sin</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac300aieqn1.gif" xlink:type="simple" /> </jats:inline-formula>) estimations reported by the APOGEE-2 collaboration as well as individual masses and ages derived from the position of the stars in the HR diagram, considering Gaia-EDR3 parallaxes and photometry plus diverse evolutionary models. We find an empirical trend for <jats:inline-formula> <jats:tex-math> <?CDATA $v\sin (i)$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>v</mml:mi> <mml:mi>sin</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac300aieqn2.gif" xlink:type="simple" /> </jats:inline-formula> decreasing with age for low-mass stars (0.4<jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> &lt; <jats:italic>M</jats:italic> <jats:sub>*</jats:sub> &lt; 1.2<jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>). Our results support the existence of a mechanism linking <jats:inline-formula> <jats:tex-math> <?CDATA $v\sin (i)$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>v</mml:mi> <mml:mi>sin</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>i</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac300aieqn3.gif" xlink:type="simple" /> </jats:inline-formula> to the presence of accreting protoplanetary disks, responsible for regulating stellar rotation on timescales of about 6 Myr, which is the timescale in which most of the T Tauri stars lose their inner disk. Our results provide important constraints to models of rotation in the early phases of evolution of young stars and their disks.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 177

Testing Evolutionary Models with Red Supergiant and Wolf–Rayet Populations

Philip MasseyORCID; Kathryn F. NeugentORCID; Trevor Z. Dorn-WallensteinORCID; J. J. EldridgeORCID; E. R. StanwayORCID; Emily M. LevesqueORCID

<jats:title>Abstract</jats:title> <jats:p>Despite the many successes that modern massive star evolutionary theory has enjoyed, reproducing the apparent trend in the relative number of red supergiants (RSGs) and Wolf–Rayet (WR) stars has remained elusive. Previous estimates show the RSG/WR ratio decreasing strongly with increasing metallicity. However, the evolutionary models have always predicted a relatively flat distribution for the RSG/WR ratio. In this paper we reexamine this issue, drawing on recent surveys for RSGs and WRs in the Magellanic Clouds, M31, and M33. The RSG surveys have used Gaia astrometry to eliminate foreground contamination and have separated RSGs from asymptotic giant branch stars using near-infrared colors. The surveys for WRs have utilized interference-filter imaging, photometry, and image subtraction techniques to identify candidates, which have then been confirmed spectroscopically. After carefully matching the observational criteria to the models, we now find good agreement in both the single-star Geneva and binary BPASS models with the new observations. The agreement is better when we shift the RSG effective temperatures derived from <jats:italic>J</jats:italic> − <jats:italic>Ks</jats:italic> photometry downwards by 200 K in order to agree with the Levesque TiO effective temperature scale. In an appendix we also present a source list of RSGs for the SMC which includes effective temperatures and luminosities derived from near-infrared 2MASS photometry, in the same manner as used for the other galaxies.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 177