Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal (ApJ)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 1995 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0004-637X

ISSN electrónico

1538-4357

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Halo Mass-concentration Relation at the High-mass End

Weiwei XuORCID; Huanyuan ShanORCID; Ran Li; Chunxiang Wang; Linhua Jiang; Eric Jullo; Ginevra Favole; Jean-Paul Kneib; Chaoli Zhang

<jats:title>Abstract</jats:title> <jats:p>The concentration–mass (<jats:italic>c</jats:italic>–M) relation encodes key information about the assembly history of dark matter halos. However, its behavior at the high mass end has not been measured precisely in observations yet. In this paper, we report the measurement of the halo <jats:italic>c</jats:italic>–M relation with the galaxy–galaxy lensing method, using the shear catalog of the Dark Energy Camera Legacy Survey (DECaLS) Data Release 8, which covers a sky area of 9500 deg<jats:sup>2</jats:sup>. The foreground lenses are selected from the redMaPPer, LOWZ, and CMASS catalogs, with halo masses ranging from 10<jats:sup>13</jats:sup> to 10<jats:sup>15</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> and redshifts ranging from <jats:italic>z</jats:italic> = 0.08 to <jats:italic>z</jats:italic> = 0.65. We find that the concentration decreases with the halo mass from 10<jats:sup>13</jats:sup> to 10<jats:sup>14</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>, but shows a trend of upturn after the pivot point of ∼10<jats:sup>14</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>. We fit the measured <jats:italic>c</jats:italic>–M relation with the concentration model <jats:inline-formula> <jats:tex-math> <?CDATA $c(M)={C}_{0}\,{\left(\tfrac{M}{{10}^{12}\,{M}_{\odot }/h}\right)}^{-\gamma }\,\left[1+{\left(\tfrac{M}{{M}_{0}}\right)}^{0.4}\right]$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>c</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mspace width="0.50em" /> <mml:msup> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mstyle displaystyle="false"> <mml:mfrac> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>h</mml:mi> </mml:mrow> </mml:mfrac> </mml:mstyle> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>γ</mml:mi> </mml:mrow> </mml:msup> <mml:mspace width="0.50em" /> <mml:mfenced close="]" open="["> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msup> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mstyle displaystyle="false"> <mml:mfrac> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:mfrac> </mml:mstyle> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mn>0.4</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:mfenced> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1b9eieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, and we get the values (<jats:italic>C</jats:italic> <jats:sub>0</jats:sub>, <jats:italic>γ</jats:italic>, log<jats:sub>10</jats:sub>(<jats:italic>M</jats:italic> <jats:sub>0</jats:sub>)) = (5.119<jats:sub>−0.185</jats:sub> <jats:sup>0.183</jats:sup>, <jats:inline-formula> <jats:tex-math> <?CDATA ${0.205}_{-0.010}^{0.010}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>0.205</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.010</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0.010</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1b9eieqn2.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math> <?CDATA ${14.083}_{-0.133}^{0.130}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>14.083</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.133</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0.130</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1b9eieqn3.gif" xlink:type="simple" /> </jats:inline-formula>) and (<jats:inline-formula> <jats:tex-math> <?CDATA ${4.875}_{-0.208}^{0.209}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>4.875</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.208</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0.209</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1b9eieqn4.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math> <?CDATA ${0.221}_{-0.010}^{0.010}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>0.221</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.010</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0.010</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1b9eieqn5.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math> <?CDATA ${13.750}_{-0.141}^{0.142}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>13.750</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.141</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0.142</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1b9eieqn6.gif" xlink:type="simple" /> </jats:inline-formula>) for halos with 0.08 ≤ <jats:italic>z</jats:italic> &lt; 0.35 and 0.35 ≤ <jats:italic>z</jats:italic> &lt; 0.65, respectively. We also show that the model including an upturn is favored over a simple power-law model. Our measurement provides important information for the recent argument over the massive cluster formation process.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 162

Spatially Separated Electron and Proton Beams in a Simulated Solar Coronal Jet

Ross PallisterORCID; Peter F. WyperORCID; David I. PontinORCID; C. Richard DeVoreORCID; Federica Chiti

<jats:title>Abstract</jats:title> <jats:p>Magnetic reconnection is widely accepted to be a major contributor to nonthermal particle acceleration in the solar atmosphere. In this paper we investigate particle acceleration during the impulsive phase of a coronal jet, which involves bursty reconnection at a magnetic null point. A test-particle approach is employed, using electromagnetic fields from a magnetohydrodynamic simulation of such a jet. Protons and electrons are found to be accelerated nonthermally both downwards toward the domain’s lower boundary and the solar photosphere, and outwards along the axis of the coronal jet and into the heliosphere. A key finding is that a circular ribbon of particle deposition on the photosphere is predicted, with the protons and electrons concentrated in different parts of the ribbon. Furthermore, the outgoing protons and electrons form two spatially separated beams parallel to the axis of the jet, signatures that may be observable in in-situ observations of the heliosphere.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 163

Direct Measurements of Giant Star Effective Temperatures and Linear Radii: Calibration against Spectral Types and V − K Color

Gerard T. van BelleORCID; Kaspar von BraunORCID; David R. CiardiORCID; Genady Pilyavsky; Ryan S. Buckingham; Andrew F. Boden; Catherine A. ClarkORCID; Zachary HartmanORCID; Gerald van BelleORCID; William Bucknew; Gary ColeORCID

<jats:title>Abstract</jats:title> <jats:p>We calculate directly determined values for effective temperature (<jats:italic>T</jats:italic> <jats:sub>eff</jats:sub>) and radius (<jats:italic>R</jats:italic>) for 191 giant stars based upon high-resolution angular size measurements from optical interferometry at the Palomar Testbed Interferometer. Narrow- to wideband photometry data for the giants are used to establish bolometric fluxes and luminosities through spectral energy distribution fitting, which allows for homogeneously establishing an assessment of spectral type and dereddened <jats:italic>V</jats:italic> <jats:sub>0</jats:sub> − <jats:italic>K</jats:italic> <jats:sub>0</jats:sub> color; these two parameters are used as calibration indices for establishing trends in <jats:italic>T</jats:italic> <jats:sub>eff</jats:sub> and <jats:italic>R</jats:italic>. Spectral types range from G0III to M7.75III, <jats:italic>V</jats:italic> <jats:sub>0</jats:sub> − <jats:italic>K</jats:italic> <jats:sub>0</jats:sub> from 1.9 to 8.5. For the <jats:italic>V</jats:italic> <jats:sub>0</jats:sub> − <jats:italic>K</jats:italic> <jats:sub>0</jats:sub> = {1.9, 6.5} range, median <jats:italic>T</jats:italic> <jats:sub>eff</jats:sub> uncertainties in the fit of effective temperature versus color are found to be less than 50 K; over this range, <jats:italic>T</jats:italic> <jats:sub>eff</jats:sub> drops from 5050 to 3225 K. Linear sizes are found to be largely constant at 11 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub> from G0III to K0III, increasing linearly with subtype to 50 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub> at K5III, and then further increasing linearly to 150 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub> by M8III. Three examples of the utility of this data set are presented: first, a fully empirical Hertzsprung–Russell diagram is constructed and examined against stellar evolution models; second, values for stellar mass are inferred based on measures of <jats:italic>R</jats:italic> and literature values for <jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{log}g$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>log</mml:mi> <mml:mi>g</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1687ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>; finally, an improved calibration of an angular size prediction tool, based upon <jats:italic>V</jats:italic> and <jats:italic>K</jats:italic> values for a star, is presented.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 163

The Isaac Newton Telescope Monitoring Survey of Local Group Dwarf Galaxies. II. The Star-formation History of Andromeda I Derived from Long-period Variables

Elham SaremiORCID; Atefeh JavadiORCID; Mahdieh NavabiORCID; Jacco Th. van LoonORCID; Habib G. Khosroshahi; Behzad Bojnordi ArbabORCID; Iain McDonald

<jats:title>Abstract</jats:title> <jats:p>An optical monitoring survey in the nearby dwarf galaxies was carried out with the 2.5 m Isaac Newton Telescope. 55 dwarf galaxies and four isolated globular clusters in the Local Group were observed with the Wide Field Camera. The main aims of this survey are to identify the most evolved asymptotic giant branch stars and red supergiants at the endpoint of their evolution based on their pulsational instability, use their distribution over luminosity to reconstruct the star-formation history (SFH), quantify the dust production and mass loss from modeling the multiwavelength spectral energy distributions, and relate this to luminosity and radius variations. In this second of a series of papers, we present the methodology used to estimate SFH based on long-period variable (LPV) stars and then derive it for Andromeda I (And I) dwarf galaxy as an example of the survey. Using our identified 59 LPV candidates within two half-light radii of And I and Padova stellar evolution models, we estimated the SFH of this galaxy. A major epoch of star formation occurred in And I peaking around 6.6 Gyr ago, reaching 0.0035 ± 0.0016 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup> and only slowly declining until 1–2 Gyr ago. The presence of some dusty LPVs in this galaxy corresponds to a slight increase in recent star formation peaking around 800 Myr ago. We evaluate a quenching time around 4 Gyr ago (<jats:italic>z</jats:italic> &lt; 0.5), which makes And I a late-quenching dSph. A total stellar mass (16 ± 7) × 10<jats:sup>6</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> is calculated within two half-light radii of And I for a constant metallicity <jats:italic>Z</jats:italic> = 0.0007.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 164

Architecture of Planetary Systems Predicted from Protoplanetary Disks Observed with ALMA. I. Mass of the Possible Planets Embedded in the Dust Gap

Shijie WangORCID; Kazuhiro D. KanagawaORCID; Yasushi SutoORCID

<jats:title>Abstract</jats:title> <jats:p>Recent ALMA observations have identified a variety of dust gaps in protoplanetary disks, which are commonly interpreted to be generated by unobserved planets. Predicting mass of such embedded planets is of fundamental importance in comparing those disk architectures with the observed diversity of exoplanets. The prediction, however, depends on the assumption that whether the same gap structure exists in the dust component alone or in the gas component as well. We assume a planet can only open a gap in the gas component when its mass exceeds the pebble isolation mass by considering the core-accretion scenario. We then propose two criteria to distinguish if a gap is opened in the dust disk alone or the gas gap as well when observation data on the gas profile is not available. We apply the criteria to 35 disk systems with a total of 55 gaps compiled from previous studies and classify each gap into four different groups. The classification of the observed gaps allows us to predict the mass of embedded planets in a consistent manner with the pebble isolation mass. We find that outer gaps are mostly dust alone, while inner gaps are more likely to be associated with a gas gap as well. The distribution of such embedded planets is very different from the architecture of the observed planetary systems, suggesting that significant inward migration is required in their evolution.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 165

Daily Variations of Plasma Density in the Solar Streamer Belt

Huw MorganORCID

<jats:title>Abstract</jats:title> <jats:p>Improved space weather diagnostics depend critically on improving our understanding of the evolution of the slow solar wind in the streamer belts near the Sun. Recent innovations in tomography techniques are opening a new window on this complex environment. In this work, a new time-dependent technique is applied to COR2A/Solar Terrestrial Relations Observatory observations from a period near solar minimum (2018 November 11) for heliocentric distances of 4–8 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub>. For the first time, we find density variations of large amplitude throughout the quiescent streamer belt, ranging between 50% and 150% of the mean density, on timescales of tens of hours to days. Good agreement is found with Parker Solar Probe measurements at perihelion; thus, the variations revealed by tomography must form a major component of the slow solar wind variability, distinct from coronal mass ejections or smaller transients. A comparison of time series at different heights reveals a consistent time lag, so that changes at 4 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub> occur later at increasing height, corresponding to an outward propagation speed of around 100 km s<jats:sup>−1</jats:sup>. This speed may correspond to either the plasma sound speed or the bulk outflow speed depending on an important question: are the density variations caused by the spatial movement of a narrow streamer belt (moving magnetic field, constant plasma density), or changes in plasma density within a nonmoving streamer belt (rigid magnetic field, variable density), or a combination of both?</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 165

Convective Overshooting in Extreme Horizontal-branch Stars Using MESA with the k-omega Model*

Zhi LiORCID; Yan LiORCID

<jats:title>Abstract</jats:title> <jats:p>To explore overshoot mixing beyond the convective core in core helium-burning stars, we use the <jats:italic>k</jats:italic>−<jats:italic>ω</jats:italic> model, which is incorporated into the Modules of Experiments in Stellar Astrophysics to investigate overshoot mixing in the evolution of subdwarf B (sdB) stars. Our results show that the development of the convective core can be divided into three stages. The mass of the convective core increases monotonically when the radiative temperature gradient, ∇<jats:sub>rad</jats:sub>, monotonically decreases outwardly, and overshoot mixing presents an exponential decay similar to Herwig. The splitting of the convective core occurs repeatedly when the minimum value of ∇<jats:sub>rad</jats:sub> near the convective boundary is smaller than the adiabatic temperature gradient, ∇<jats:sub>ad</jats:sub>. The mass at the outer boundary of the convective shell <jats:italic>M</jats:italic> <jats:sub>sc</jats:sub> can exceed 0.2 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> after the central helium abundance drops to about <jats:italic>Y</jats:italic> <jats:sub>c</jats:sub> ≈ 0.45. It is close to the convective core masses derived by asteroseismology for younger models (0.22 to ∼0.28 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>). In the final stage, “core breathing pulses” occurred two or three times. Helium was injected into the convective core by overshoot mixing and increased the lifetime of sdB stars. The mass of the mixed region <jats:italic>M</jats:italic> <jats:sub>mixed</jats:sub> can rise to 0.303 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> by the end. The oxygen content in the central core of our <jats:italic>g</jats:italic>-mode sdB models is about 80% by mass. The high amounts of oxygen deduced from asteroseismology may be evidence supporting the existence of core breathing pulses.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 166

Coherent Emission in Pulsars, Magnetars, and Fast Radio Bursts: Reconnection-driven Free Electron Laser

Maxim LyutikovORCID

<jats:title>Abstract</jats:title> <jats:p>We develop a model of the generation of coherent radio emission in the Crab pulsar, magnetars, and fast radio bursts (FRBs). Emission is produced by a reconnection-generated beam of particles via a variant of the free electron laser mechanism, operating in a weakly turbulent, guide field-dominated plasma. We first consider nonlinear Thomson scattering in a guide field-dominated regime, and apply it to explain emission bands observed in Crab pulsar and in FRBs. We consider particle motion in a combined field of the electromagnetic wave and the electromagnetic (Alfvénic) wiggler. Charge bunches, created via a ponderomotive force, Compton/Raman scatter the wiggler field coherently. The model is both robust to the underlying plasma parameters and succeeds in reproducing a number of subtle observed features: (i) emission frequencies depend mostly on the scale <jats:italic>λ</jats:italic> <jats:sub> <jats:italic>t</jats:italic> </jats:sub> of turbulent fluctuations and the Lorentz factor of the reconnection-generated beam, <jats:inline-formula> <jats:tex-math> <?CDATA $\omega \sim {\gamma }_{b}^{2}(c/{\lambda }_{t})$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ω</mml:mi> <mml:mo>∼</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>c</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1b32ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>—it is independent of the absolute value of the underlying magnetic field. (ii) The model explains both broadband emission and the presence of emission stripes, including multiple stripes observed in the high frequency interpulse of the Crab pulsar. (iii) The model reproduces correlated polarization properties: the presence of narrow emission bands in the spectrum favors linear polarization, while broadband emission can have an arbitrary polarization. (iv) The mechanism is robust to the momentum spread of the particle in the beam. We also discuss a model of wigglers as nonlinear force-free Alfvén solitons (light darts).</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 166

SN 2018agk: A Prototypical Type Ia Supernova with a Smooth Power-law Rise in Kepler (K2)

Qinan WangORCID; Armin RestORCID; Yossef Zenati; Ryan Ridden-HarperORCID; Georgios DimitriadisORCID; Gautham NarayanORCID; V. Ashley VillarORCID; Mark R. MageeORCID; Ryan J. FoleyORCID; Edward J. ShayaORCID; Peter GarnavichORCID; Lifan WangORCID; Lei HuORCID; Attila BódiORCID; Patrick ArmstrongORCID; Katie AuchettlORCID; Thomas BarclayORCID; Geert BarentsenORCID; Zsófia BognárORCID; Joseph Brimacombe; Joanna Bulger; Jamison BurkeORCID; Peter Challis; Kenneth ChambersORCID; David A. CoulterORCID; Géza Csörnyei; Borbála Cseh; Maxime DeckersORCID; Jessie L. DotsonORCID; Lluís GalbanyORCID; Santiago González-GaitánORCID; Mariusz GromadzkiORCID; Michael Gully-SantiagoORCID; Ottó HanyeczORCID; Christina HedgesORCID; Daichi HiramatsuORCID; Griffin HosseinzadehORCID; D. Andrew HowellORCID; Steve B. HowellORCID; Mark E. HuberORCID; Saurabh W. JhaORCID; David O. JonesORCID; Réka Könyves-Tóth; Csilla Kalup; Charles D. Kilpatrick; Levente Kriskovics; Wenxiong Li; Thomas B LoweORCID; Steven MargheimORCID; Curtis McCullyORCID; Ayan MitraORCID; Jose A. MuñozORCID; Matt NichollORCID; Jakob NordinORCID; András PálORCID; Yen-Chen PanORCID; Anthony L. PiroORCID; Sofia RestORCID; João Rino-SilvestreORCID; César Rojas-BravoORCID; Krisztián SárneczkyORCID; Matthew R. SiebertORCID; Stephen J. SmarttORCID; Ken SmithORCID; Ádám Sódor; Maximilian D. StritzingerORCID; Róbert SzabóORCID; Róbert SzakátsORCID; Brad E. TuckerORCID; József VinkóORCID; Xiaofeng WangORCID; J. Craig WheelerORCID; David R. YoungORCID; Alfredo Zenteno; KaiCheng Zhang; Gabriella Zsidi

<jats:title>Abstract</jats:title> <jats:p>We present the 30 minutes cadence Kepler/K2 light curve of the Type Ia supernova (SN Ia) SN 2018agk, covering approximately one week before explosion, the full rise phase, and the decline until 40 days after peak. We additionally present ground-based observations in multiple bands within the same time range, including the 1 day cadence DECam observations within the first ∼5 days after the first light. The Kepler early light curve is fully consistent with a single power-law rise, without evidence of any bump feature. We compare SN 2018agk with a sample of other SNe Ia without early excess flux from the literature. We find that SNe Ia without excess flux have slowly evolving early colors in a narrow range (<jats:italic>g</jats:italic> − <jats:italic>i</jats:italic> ≈ −0.20 ± 0.20 mag) within the first ∼10 days. On the other hand, among SNe Ia detected with excess, SN 2017cbv and SN 2018oh tend to be bluer, while iPTF16abc’s evolution is similar to normal SNe Ia without excess in <jats:italic>g</jats:italic> − <jats:italic>i</jats:italic>. We further compare the Kepler light curve of SN 2018agk with companion-interaction models, and rule out the existence of a typical nondegenerate companion undergoing Roche lobe overflow at viewing angles smaller than 45°.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 167

First HETDEX Spectroscopic Determinations of Lyα and UV Luminosity Functions at z = 2–3: Bridging a Gap between Faint AGNs and Bright Galaxies

Yechi ZhangORCID; Masami OuchiORCID; Karl GebhardtORCID; Erin Mentuch CooperORCID; Chenxu LiuORCID; Dustin DavisORCID; Donghui JeongORCID; Daniel J. FarrowORCID; Steven L. FinkelsteinORCID; Eric GawiserORCID; Gary J. HillORCID; Yuichi HarikaneORCID; Ryota Kakuma; Viviana AcquavivaORCID; Caitlin M. CaseyORCID; Maximilian FabriciusORCID; Ulrich HoppORCID; Matt J. JarvisORCID; Martin LandriauORCID; Ken MawatariORCID; Shiro MukaeORCID; Yoshiaki OnoORCID; Nao Sakai; Donald P. SchneiderORCID

<jats:title>Abstract</jats:title> <jats:p>We present Ly<jats:italic>α</jats:italic> and ultraviolet (UV)-continuum luminosity functions (LFs) of galaxies and active galactic nuclei (AGNs) at <jats:italic>z</jats:italic> = 2.0–3.5 determined by the untargeted optical spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in 11.4 deg<jats:sup>2</jats:sup> of fiber spectra sky coverage, obtaining 18,320 galaxies spectroscopically identified with Ly<jats:italic>α</jats:italic> emission, 2126 of which host type 1 AGNs showing broad (FWHM &gt; 1000 km s<jats:sup>−1</jats:sup>) Ly<jats:italic>α</jats:italic> emission lines. We derive the Ly<jats:italic>α</jats:italic> (UV) LF over 2 orders of magnitude covering bright galaxies and AGNs in <jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{log}{L}_{\mathrm{Ly}\alpha }/[\mathrm{erg}\,{{\rm{s}}}^{-1}]=43.3\mbox{--}45.5$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>log</mml:mi> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Ly</mml:mi> <mml:mi>α</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mi>erg</mml:mi> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy="false">]</mml:mo> <mml:mo>=</mml:mo> <mml:mn>43.3</mml:mn> <mml:mo>–</mml:mo> <mml:mn>45.5</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1e97ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> (−27 &lt; <jats:italic>M</jats:italic> <jats:sub>UV</jats:sub> &lt; −20) by the 1/<jats:italic>V</jats:italic> <jats:sub>max</jats:sub> estimator. Our results reveal that the bright-end hump of the Ly<jats:italic>α</jats:italic> LF is composed of type 1 AGNs. In conjunction with previous spectroscopic results at the faint end, we measure a slope of the best-fit Schechter function to be <jats:inline-formula> <jats:tex-math> <?CDATA ${\alpha }_{\mathrm{Sch}}=-{1.70}_{-0.14}^{+0.13}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Sch</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>1.70</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.14</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.13</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1e97ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>, which indicates that <jats:italic>α</jats:italic> <jats:sub>Sch</jats:sub> steepens from <jats:italic>z</jats:italic> = 2–3 toward high redshift. Our UV LF agrees well with previous AGN UV LFs and extends to faint-AGN and bright-galaxy regimes. The number fraction of Ly<jats:italic>α</jats:italic>-emitting objects (<jats:italic>X</jats:italic> <jats:sub>LAE</jats:sub>) increases from <jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{\mathrm{UV}}^{* }\sim -21$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>UV</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>∼</mml:mo> <mml:mo>−</mml:mo> <mml:mn>21</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1e97ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> to bright magnitude due to the contribution of type 1 AGNs, while previous studies claim that <jats:italic>X</jats:italic> <jats:sub>Ly<jats:italic>α</jats:italic> </jats:sub> decreases from faint magnitudes to <jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{\mathrm{UV}}^{* }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>UV</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1e97ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>, suggesting a valley in the <jats:italic>X</jats:italic> <jats:sub>Ly<jats:italic>α</jats:italic> </jats:sub>–magnitude relation at <jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{\mathrm{UV}}^{* }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>UV</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac1e97ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>. Comparing our UV LF of type 1 AGNs at <jats:italic>z</jats:italic> = 2–3 with those at <jats:italic>z</jats:italic> = 0, we find that the number density of faint (<jats:italic>M</jats:italic> <jats:sub>UV</jats:sub> &gt; −21) type 1 AGNs increases from <jats:italic>z</jats:italic> ∼ 2 to 0, as opposed to the evolution of bright (<jats:italic>M</jats:italic> <jats:sub>UV</jats:sub> &lt; −21) type 1 AGNs, suggesting AGN downsizing in the rest-frame UV luminosity.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 167