Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal (ApJ)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
| Institución detectada | Período | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | desde jul. 1995 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0004-637X
ISSN electrónico
1538-4357
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Impact of Magnetorotational Instability on Grain Growth in Protoplanetary Disks. II. Increased Grain Collisional Velocities
Munan Gong
; Alexei V. Ivlev
; Vitaly Akimkin
; Paola Caselli
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 82
Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds
Daisei Abe
; Tsuyoshi Inoue
; Shu-ichiro Inutsuka
; Tomoaki Matsumoto
<jats:title>Abstract</jats:title> <jats:p>Recent observations of molecular clouds show that dense filaments are the sites of present-day star formation. Thus, it is necessary to understand the filament formation process because these filaments provide the initial condition for star formation. Theoretical research suggests that shock waves in molecular clouds trigger filament formation. Since several different mechanisms have been proposed for filament formation, the formation mechanism of the observed star-forming filaments requires clarification. In the present study, we perform a series of isothermal magnetohydrodynamics simulations of filament formation. We focus on the influences of shock velocity and turbulence on the formation mechanism and identified three different mechanisms for the filament formation. The results indicate that when the shock is fast, at shock velocity <jats:italic>v</jats:italic> <jats:sub>sh</jats:sub> ≃ 7 km s<jats:sup>−1</jats:sup>, the gas flows driven by the curved shock wave create filaments irrespective of the presence of turbulence and self-gravity. However, at a slow shock velocity <jats:italic>v</jats:italic> <jats:sub>sh</jats:sub> ≃ 2.5 km s<jats:sup>−1</jats:sup>, the compressive flow component involved in the initial turbulence induces filament formation. When both the shock velocities and turbulence are low, the self-gravity in the shock-compressed sheet becomes important for filament formation. Moreover, we analyzed the line-mass distribution of the filaments and showed that strong shock waves can naturally create high-line-mass filaments such as those observed in the massive star-forming regions in a short time. We conclude that the dominant filament formation mode changes with the velocity of the shock wave triggering the filament formation.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 83
Generic Models for Disk-resolved and Disk-integrated Phase-dependent Linear Polarization of Light Reflected from Exoplanets
Aritra Chakrabarty
; Sujan Sengupta
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 83
Near-Sun Switchback Boundaries: Dissipation with Solar Distance
Anthony P. Rasca
; William M. Farrell
; Robert J. MacDowall
; Stuart D. Bale
; Justin C. Kasper
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 84
The Infrared Echo of SN2010jl and Its Implications for Shock Breakout Characteristics
Eli Dwek
; Arkaprabha Sarangi
; Richard G. Arendt
; Timothy Kallman
; Demos Kazanas
; Ori D. Fox
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 84
Molecular Dynamics Approach for Predicting Release Temperatures of Noble Gases in Presolar Nanodiamonds
Alireza Aghajamali
; Andrey A. Shiryaev
; Nigel A. Marks
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 85
A Giant Loop of Ionized Gas Emerging from the Tumultuous Central Region of IC 5063*
W. Peter Maksym
; Giuseppina Fabbiano
; Martin Elvis
; Luis C. Ho
; Tom Oosterloo
; Jingzhe Ma
; Andrea Travascio
; Travis C. Fischer
; William C. Keel
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 85
Feeding the Accretion Disk from the Dusty Torus in a Reddened Quasar
Ge Li; Xiheng Shi
; Qiguo Tian
; Luming Sun
; Xinwen Shu
; Xiangjun Chen; Hongyan Zhou
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 86
Total Solar Irradiance Variability on the Evolutionary Timescale and its Impact on the Earth’s Mean Surface Temperature
N. T. Shukure
; S. B Tessema
; N. Gopalswamy
<jats:title>Abstract</jats:title> <jats:p>The Sun is the primary source of energy for the Earth. The small changes in total solar irradiance (TSI) can affect our climate on the longer timescale. In the evolutionary timescale, the TSI varies by a large amount and hence its influence on the Earth’s mean surface temperature (<jats:italic>T</jats:italic> <jats:sub> <jats:italic>s</jats:italic> </jats:sub>) also increases significantly. We develop a mass loss dependent analytical model of TSI in the evolutionary timescale and evaluated its influence on the <jats:italic>T</jats:italic> <jats:sub> <jats:italic>s</jats:italic> </jats:sub>. We determined the numerical solution of TSI for the next 8.23 Gyr to be used as an input to evaluate the <jats:italic>T</jats:italic> <jats:sub> <jats:italic>s</jats:italic> </jats:sub> which formulated based on a zero-dimensional energy balance model. We used the present-day albedo and bulk atmospheric emissivity of the Earth and Mars as initial and final boundary conditions, respectively. We found that the TSI increases by 10% in 1.42 Gyr, by 40% in about 3.4 Gyr, and by 120% in about 5.229 Gyr from now, while the <jats:italic>T</jats:italic> <jats:sub> <jats:italic>s</jats:italic> </jats:sub> shows an insignificant change in 1.644 Gyr and increases to 298.86 K in about 3.4 Gyr. The <jats:italic>T</jats:italic> <jats:sub> <jats:italic>s</jats:italic> </jats:sub> attains the peak value of 2319.2 K as the Sun evolves to the red giant and emits the enormous TSI of 7.93 × 10<jats:sup>6</jats:sup> W m<jats:sup>−2</jats:sup> in 7.676 Gys. At this temperature Earth likely evolves to be a liquid planet. In our finding, the absorbed and emitted flux equally increases and approaches the surface flux in the main sequence, and they are nearly equal beyond the main sequence, while the flux absorbed by the cloud shows the opposite trend.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 86