Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal (ApJ)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
| Institución detectada | Período | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | desde jul. 1995 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0004-637X
ISSN electrónico
1538-4357
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Estimating Dust Attenuation From Galactic Spectra. II. Stellar and Gas Attenuation in Star-forming and Diffuse Ionized Gas Regions in MaNGA
Niu Li
; Cheng Li
; Houjun Mo; Shuang Zhou
; Fu-heng Liang
; Médéric Boquien; Niv Drory
; José G. Fernández-Trincado; Michael Greener; Rogério Riffel
<jats:title>Abstract</jats:title> <jats:p>We investigate the dust attenuation in both stellar populations and ionized gas in kiloparsec-scale regions in nearby galaxies using integral field spectroscopy data from MaNGA MPL-9. We identify star-forming (H <jats:sc>ii</jats:sc>) and diffuse ionized gas (DIG) regions from MaNGA data cubes. From the stacked spectrum of each region, we measure the stellar attenuation, <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{star}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, using the technique developed by Li et al., as well as the gas attenuation, <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{gas}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>gas</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>, from the Balmer decrement. We then examine the correlation of <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{star}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{gas}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>gas</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{gas}}-E{\left(B-V\right)}_{\mathrm{star}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>gas</mml:mi> </mml:mrow> </mml:msub> <mml:mo>−</mml:mo> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{star}}/E{\left(B-V\right)}_{\mathrm{gas}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>gas</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn6.gif" xlink:type="simple" /> </jats:inline-formula> with 16 regional/global properties, and for regions with different H<jats:italic>α</jats:italic> surface brightnesses (Σ<jats:sub>H<jats:italic>α</jats:italic> </jats:sub>). We find a stronger correlation between <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{star}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn7.gif" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{gas}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>gas</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn8.gif" xlink:type="simple" /> </jats:inline-formula> in regions of higher Σ<jats:sub>H<jats:italic>α</jats:italic> </jats:sub>. The luminosity-weighted age (<jats:italic>t</jats:italic> <jats:sub> <jats:italic>L</jats:italic> </jats:sub>) is found to be the property that is the most strongly correlated with <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{star}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn9.gif" xlink:type="simple" /> </jats:inline-formula>, and consequently, with <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{gas}}-E{\left(B-V\right)}_{\mathrm{star}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>gas</mml:mi> </mml:mrow> </mml:msub> <mml:mo>−</mml:mo> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn10.gif" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{star}}/E{\left(B-V\right)}_{\mathrm{gas}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>gas</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn11.gif" xlink:type="simple" /> </jats:inline-formula>. At fixed Σ<jats:sub>H<jats:italic>α</jats:italic> </jats:sub>, <jats:inline-formula> <jats:tex-math> <?CDATA ${\mathrm{log}}_{10}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>log</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn12.gif" xlink:type="simple" /> </jats:inline-formula> <jats:italic>t</jats:italic> <jats:sub> <jats:italic>L</jats:italic> </jats:sub> is linearly and negatively correlated with <jats:inline-formula> <jats:tex-math> <?CDATA $E{\left(B-V\right)}_{\mathrm{star}}/E{\left(B-V\right)}_{\mathrm{gas}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>star</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>E</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>−</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>gas</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac0973ieqn13.gif" xlink:type="simple" /> </jats:inline-formula> at all ages. Gas-phase metallicity and ionization level are important for the attenuation in the gas. Our results indicate that the ionizing source for DIG regions is likely distributed in the outskirts of galaxies, while for H <jats:sc>ii</jats:sc> regions, our results can be well explained by the two-component dust model of Charlot & Fall.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 72
A Comparison between Nuclear Ring Star Formation in LIRGs and in Normal Galaxies with the Very Large Array
Y. Song
; S. T. Linden
; A. S. Evans
; L. Barcos-Muñoz
; G. C. Privon
; I. Yoon
; E. J. Murphy
; K. L. Larson
; T. Díaz-Santos
; L. Armus
; Joseph M. Mazzarella
; J. Howell
; H. Inami
; N. Torres-Albà
; V. U
; V. Charmandaris
; J. McKinney
; D. Kunneriath
; E. Momjian
<jats:title>Abstract</jats:title> <jats:p>Nuclear rings are excellent laboratories for studying intense star formation. We present results from a study of nuclear star-forming rings in five nearby normal galaxies from the Star Formation in Radio Survey (SFRS) and four local LIRGs from the Great Observatories All-sky LIRG Survey at sub-kiloparsec resolutions using Very Large Array high-frequency radio continuum observations. We find that nuclear ring star formation (NRSF) contributes 49%–60% of the total star formation of the LIRGs, compared to 7%–40% for the normal galaxies. We characterize a total of 57 individual star-forming regions in these rings, and find that with measured sizes of 10–200 pc, NRSF regions in the LIRGs have star formation rate (SFR) and Σ<jats:sub>SFR</jats:sub> up to 1.7 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup> and 402 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup> kpc<jats:sup>−2</jats:sup>, respectively, which are about 10 times higher than in NRSF regions in the normal galaxies with similar sizes, and comparable to lensed high-<jats:italic>z</jats:italic> star-forming regions. At ∼100–300 pc scales, we estimate low contributions (<50%) of thermal free–free emission to total radio continuum emission at 33 GHz in the NRSF regions in the LIRGs, but large variations possibly exist at smaller physical scales. Finally, using archival sub-kiloparsec resolution CO (<jats:italic>J</jats:italic> = 1–0) data of nuclear rings in the normal galaxies and NGC 7469 (LIRG), we find a large scatter in gas depletion times at similar molecular gas surface densities, which tentatively points to a multimodal star formation relation on sub-kiloparsec scales.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 73
Rapid Variability of Sgr A* across the Electromagnetic Spectrum
G. Witzel
; G. Martinez
; S. P. Willner
; E. E. Becklin; H. Boyce
; T. Do
; A. Eckart
; G. G. Fazio
; A. Ghez
; M. A. Gurwell
; D. Haggard
; R. Herrero-Illana
; J. L. Hora
; Z. Li
; J. Liu
; N. Marchili
; Mark R. Morris
; Howard A. Smith; M. Subroweit
; J. A. Zensus
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 73
A Photoionization Mass Spectrometry Investigation into Complex Organic Molecules Formed in Interstellar Analog Ices of Carbon Monoxide and Water Exposed to Ionizing Radiation
Andrew M. Turner; Alexandre Bergantini
; Andreas S. Koutsogiannis; N. Fabian Kleimeier; Santosh K. Singh; Cheng Zhu
; André K. Eckhardt
; Ralf I. Kaiser
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 74
Role of Suprathermal Runaway Electrons Returning to the Acceleration Region in Solar Flares
Meriem Alaoui
; Gordon D. Holman
; Joel C. Allred
; Rafael T. Eufrasio
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 74
Discovery of Two Infrared Objects with Strong Ice Absorption in the Akari Slitless Spectroscopic Survey of the Galactic Plane
Takashi Onaka
; Tomoyuki Kimura
; Itsuki Sakon
; Takashi Shimonishi
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 75
A High-resolution View of Fast Radio Burst Host Environments
Alexandra G. Mannings; Wen-fai Fong
; Sunil Simha
; J. Xavier Prochaska
; Marc Rafelski
; Charles D. Kilpatrick; Nicolas Tejos
; Kasper E. Heintz
; Keith W. Bannister
; Shivani Bhandari
; Cherie K. Day
; Adam T. Deller
; Stuart D. Ryder
; Ryan M. Shannon
; Shriharsh P. Tendulkar
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 75
Thermal Emission and Radioactive Lines, but No Pulsar, in the Broadband X-Ray Spectrum of Supernova 1987A
Dennis Alp
; Josefin Larsson
; Claes Fransson
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 76
Gravitational-wave Signatures from Compact Object Binaries in the Galactic Center
Huiyi Wang
; Alexander P. Stephan
; Smadar Naoz
; Bao-Minh Hoang
; Katelyn Breivik
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 76