Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature Materials

Resumen/Descripción – provisto por la editorial en inglés
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. Materials research is a diverse and fast-growing discipline, which has moved from a largely applied, engineering focus to a position where it has an increasing impact on other classical disciplines such as physics, chemistry and biology. Nature Materials covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties and performance of materials, where "materials" are identified as substances in the condensed states (liquid, solid, colloidal) designed or manipulated for technological ends.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com

Información

Tipo de recurso:

revistas

ISSN impreso

1476-1122

ISSN electrónico

1476-4660

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Electric-field-induced multiferroic topological solitons

Arthur Chaudron; Zixin LiORCID; Aurore FincoORCID; Pavel MartonORCID; Pauline Dufour; Amr AbdelsamieORCID; Johanna FischerORCID; Sophie Collin; Brahim DkhilORCID; Jirka HlinkaORCID; Vincent JacquesORCID; Jean-Yves Chauleau; Michel ViretORCID; Karim BouzehouaneORCID; Stéphane FusilORCID; Vincent GarciaORCID

Pp. No disponible

Sensitive proton-radiation detectors

Matthew C. BeardORCID

Pp. No disponible

Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry

Bowen LiORCID; Idris O. RajiORCID; Akiva G. R. GordonORCID; Lizhuang Sun; Theresa M. RaimondoORCID; Favour A. Oladimeji; Allen Y. JiangORCID; Andrew VarleyORCID; Robert S. LangerORCID; Daniel G. AndersonORCID

Pp. No disponible

Exceptional electronic transport and quantum oscillations in thin bismuth crystals grown inside van der Waals materials

Laisi Chen; Amy X. WuORCID; Naol Tulu; Joshua WangORCID; Adrian Juanson; Kenji WatanabeORCID; Takashi TaniguchiORCID; Michael T. PettesORCID; Marshall A. Campbell; Mingjie Xu; Chaitanya A. GadreORCID; Yinong ZhouORCID; Hangman Chen; Penghui CaoORCID; Luis A. JaureguiORCID; Ruqian WuORCID; Xiaoqing PanORCID; Javier D. Sanchez-YamagishiORCID

Pp. No disponible

Phase segregation and nanoconfined fluid O2 in a lithium-rich oxide cathode

Kit McCollORCID; Samuel W. ColesORCID; Pezhman Zarabadi-Poor; Benjamin J. MorganORCID; M. Saiful IslamORCID

<jats:title>Abstract</jats:title><jats:p>Lithium-rich oxide cathodes lose energy density during cycling due to atomic disordering and nanoscale structural rearrangements, which are both challenging to characterize. Here we resolve the kinetics and thermodynamics of these processes in an exemplar layered Li-rich (Li<jats:sub>1.2–<jats:italic>x</jats:italic></jats:sub>Mn<jats:sub>0.8</jats:sub>O<jats:sub>2</jats:sub>) cathode using a combined approach of ab initio molecular dynamics and cluster expansion-based Monte Carlo simulations. We identify a kinetically accessible and thermodynamically favourable mechanism to form O<jats:sub>2</jats:sub> molecules in the bulk, involving Mn migration and driven by interlayer oxygen dimerization. At the top of charge, the bulk structure locally phase segregates into MnO<jats:sub>2</jats:sub>-rich regions and Mn-deficient nanovoids, which contain O<jats:sub>2</jats:sub> molecules as a nanoconfined fluid. These nanovoids are connected in a percolating network, potentially allowing long-range oxygen transport and linking bulk O<jats:sub>2</jats:sub> formation to surface O<jats:sub>2</jats:sub> loss. These insights highlight the importance of developing strategies to kinetically stabilize the bulk structure of Li-rich O-redox cathodes to maintain their high energy densities.</jats:p>

Pp. No disponible

Exciton polaron formation and hot-carrier relaxation in rigid Dion–Jacobson-type two-dimensional perovskites

Somnath BiswasORCID; Ruyan ZhaoORCID; Fatimah Alowa; Marios ZachariasORCID; Sahar SharifzadehORCID; David F. CokerORCID; Dwight S. SeferosORCID; Gregory D. ScholesORCID

Pp. No disponible

Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity

N. W. HendrickxORCID; L. MassaiORCID; M. MergenthalerORCID; F. J. SchuppORCID; S. Paredes; S. W. BedellORCID; G. SalisORCID; A. FuhrerORCID

<jats:title>Abstract</jats:title><jats:p>Spin qubits defined by valence band hole states are attractive for quantum information processing due to their inherent coupling to electric fields, enabling fast and scalable qubit control. Heavy holes in germanium are particularly promising, with recent demonstrations of fast and high-fidelity qubit operations. However, the mechanisms and anisotropies that underlie qubit driving and decoherence remain mostly unclear. Here we report the highly anisotropic heavy-hole <jats:italic>g</jats:italic>-tensor and its dependence on electric fields, revealing how qubit driving and decoherence originate from electric modulations of the <jats:italic>g</jats:italic>-tensor. Furthermore, we confirm the predicted Ising-type hyperfine interaction and show that qubit coherence is ultimately limited by 1/<jats:italic>f</jats:italic> charge noise, where <jats:italic>f</jats:italic> is the frequency. Finally, operating the qubit at low magnetic field, we measure a dephasing time of <jats:inline-formula><jats:alternatives><jats:tex-math>$${T}_{2}^{* }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:msubsup> </mml:math></jats:alternatives></jats:inline-formula> = 17.6 μs, maintaining single-qubit gate fidelities well above 99% even at elevated temperatures of <jats:italic>T</jats:italic> &gt; 1 K. This understanding of qubit driving and decoherence mechanisms is key towards realizing scalable and highly coherent hole qubit arrays.</jats:p>

Pp. No disponible

A gentle nerve wrapper

Klas TybrandtORCID

Pp. No disponible

Metal bond strength regulation enables large-scale synthesis of intermetallic nanocrystals for practical fuel cells

Jiashun LiangORCID; Yangyang Wan; Houfu Lv; Xuan Liu; Fan Lv; Shenzhou Li; Jia Xu; Zhi DengORCID; Junyi Liu; Siyang Zhang; Yingjun Sun; Mingchuan Luo; Gang Lu; Jiantao HanORCID; Guoxiong WangORCID; Yunhui HuangORCID; Shaojun GuoORCID; Qing LiORCID

Pp. No disponible

A quantum coherent spin in hexagonal boron nitride at ambient conditions

Hannah L. SternORCID; Carmem M. GilardoniORCID; Qiushi Gu; Simone Eizagirre BarkerORCID; Oliver F. J. PowellORCID; Xiaoxi Deng; Stephanie A. FraserORCID; Louis FolletORCID; Chi LiORCID; Andrew J. RamsayORCID; Hark Hoe TanORCID; Igor AharonovichORCID; Mete AtatüreORCID

<jats:title>Abstract</jats:title><jats:p>Solid-state spin–photon interfaces that combine single-photon generation and long-lived spin coherence with scalable device integration—ideally under ambient conditions—hold great promise for the implementation of quantum networks and sensors. Despite rapid progress reported across several candidate systems, those possessing quantum coherent single spins at room temperature remain extremely rare. Here we report quantum coherent control under ambient conditions of a single-photon-emitting defect spin in a layered van der Waals material, namely, hexagonal boron nitride. We identify that the carbon-related defect has a spin-triplet electronic ground-state manifold. We demonstrate that the spin coherence is predominantly governed by coupling to only a few proximal nuclei and is prolonged by decoupling protocols. Our results serve to introduce a new platform to realize a room-temperature spin qubit coupled to a multiqubit quantum register or quantum sensor with nanoscale sample proximity.</jats:p>

Pp. No disponible