Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature Materials

Resumen/Descripción – provisto por la editorial en inglés
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. Materials research is a diverse and fast-growing discipline, which has moved from a largely applied, engineering focus to a position where it has an increasing impact on other classical disciplines such as physics, chemistry and biology. Nature Materials covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties and performance of materials, where "materials" are identified as substances in the condensed states (liquid, solid, colloidal) designed or manipulated for technological ends.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com

Información

Tipo de recurso:

revistas

ISSN impreso

1476-1122

ISSN electrónico

1476-4660

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis

Xianbiao FuORCID; Valerie A. Niemann; Yuanyuan ZhouORCID; Shaofeng Li; Ke Zhang; Jakob B. PedersenORCID; Mattia Saccoccio; Suzanne Z. Andersen; Kasper Enemark-Rasmussen; Peter BenedekORCID; Aoni XuORCID; Niklas H. DeisslerORCID; Jon Bjarke Valbæk MygindORCID; Adam C. Nielander; Jakob Kibsgaard; Peter C. K. VesborgORCID; Jens K. NørskovORCID; Thomas F. JaramilloORCID; Ib ChorkendorffORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Elastic microphase separation produces robust bicontinuous materials

Carla Fernández-RicoORCID; Sanjay Schreiber; Hamza OudichORCID; Charlotta Lorenz; Alba Sicher; Tianqi Sai; Viola BauernfeindORCID; Stefanie HeydenORCID; Pietro Carrara; Laura De LorenzisORCID; Robert W. StyleORCID; Eric R. DufresneORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Life-saving vaccines awarded

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Nano-oxide networks in metallic glass nanotubes lead to superelastic properties

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Oxidation-induced superelasticity in metallic glass nanotubes

Fucheng LiORCID; Zhibo Zhang; Huanrong Liu; Wenqing ZhuORCID; Tianyu Wang; Minhyuk Park; Jingyang Zhang; Niklas Bönninghoff; Xiaobin Feng; Hongti ZhangORCID; Junhua Luan; Jianguo WangORCID; Xiaodi LiuORCID; Tinghao ChangORCID; Jinn P. ChuORCID; Yang LuORCID; Yanhui LiuORCID; Pengfei GuanORCID; Yong YangORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Revealing emergent magnetic charge in an antiferromagnet with diamond quantum magnetometry

Anthony K. C. TanORCID; Hariom JaniORCID; Michael Högen; Lucio StefanORCID; Claudio CastelnovoORCID; Daniel BraundORCID; Alexandra GeimORCID; Annika MechnichORCID; Matthew S. G. FeuerORCID; Helena S. Knowles; Ariando AriandoORCID; Paolo G. RadaelliORCID; Mete AtatüreORCID

<jats:title>Abstract</jats:title><jats:p>Whirling topological textures play a key role in exotic phases of magnetic materials and are promising for logic and memory applications. In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to their ferromagnetic counterparts, but they are also difficult to study due to their vanishing net magnetic moment. One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry. Here we show that an archetypal antiferromagnet—haematite—hosts a rich tapestry of monopolar, dipolar and quadrupolar emergent magnetic charge distributions. The direct read-out of the previously inaccessible vorticity of an antiferromagnetic spin texture provides the crucial connection to its magnetic charge through a duality relation. Our work defines a paradigmatic class of magnetic systems to explore two-dimensional monopolar physics, and highlights the transformative role that diamond quantum magnetometry could play in exploring emergent phenomena in quantum materials.</jats:p>

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Stacking textured films on lattice-mismatched transparent conducting oxides via matched Voronoi cell of oxygen sublattice

Huiting HuangORCID; Jun Wang; Yong LiuORCID; Minyue Zhao; Ningsi Zhang; Yingfei Hu; Fengtao FanORCID; Jianyong FengORCID; Zhaosheng LiORCID; Zhigang ZouORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Vibrational optical control via cation motions in perovskite solar cells

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Unlocking Li superionic conductivity in face-centred cubic oxides via face-sharing configurations

Yu ChenORCID; Zhengyan LunORCID; Xinye Zhao; Krishna Prasad KoiralaORCID; Linze Li; Yingzhi SunORCID; Christopher A. O’Keefe; Xiaochen YangORCID; Zijian CaiORCID; Chongmin WangORCID; Huiwen JiORCID; Clare P. GreyORCID; Bin OuyangORCID; Gerbrand CederORCID

<jats:title>Abstract</jats:title><jats:p>Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li–In–Sn–O compound exhibits a total Li superionic conductivity of 3.38 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup> at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes.</jats:p>

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible

Publisher Correction: General room-temperature Suzuki–Miyaura polymerization for organic electronics

Haigen Xiong; Qijie Lin; Yu Lu; Ding ZhengORCID; Yawen Li; Song Wang; Wenbin XieORCID; Congqi Li; Xin Zhang; Yuze LinORCID; Zhi-Xiang WangORCID; Qinqin ShiORCID; Tobin J. MarksORCID; Hui HuangORCID

Palabras clave: Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; General Chemistry.

Pp. No disponible