Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Obligate chimerism in male yellow crazy ants

H. DarrasORCID; C. Berney; S. HasinORCID; J. DrescherORCID; H. FeldhaarORCID; L. KellerORCID

<jats:p>Multicellular organisms typically develop from a single fertilized egg and therefore consist of clonal cells. We report an extraordinary reproductive system in the yellow crazy ant. Males are chimeras of haploid cells from two divergent lineages: R and W. R cells are overrepresented in the males’ somatic tissues, whereas W cells are overrepresented in their sperm. Chimerism occurs when parental nuclei bypass syngamy and divide separately within the same egg. When syngamy takes place, the diploid offspring either develops into a queen when the oocyte is fertilized by an R sperm or into a worker when fertilized by a W sperm. This study reveals a mode of reproduction that may be associated with a conflict between lineages to preferentially enter the germ line.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 55-58

Tomography of Feshbach resonance states

Baruch MargulisORCID; Karl P. Horn; Daniel M. ReichORCID; Meenu UpadhyayORCID; Nitzan KahnORCID; Arthur ChristianenORCID; Ad van der AvoirdORCID; Gerrit C. GroenenboomORCID; Christiane P. KochORCID; Markus MeuwlyORCID; Edvardas NareviciusORCID

<jats:p>Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 77-81

Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis

Yuta HiokiORCID; Matteo CostantiniORCID; Jeremy Griffin; Kaid C. HarperORCID; Melania Prado MeriniORCID; Benedikt Nissl; Yu KawamataORCID; Phil S. BaranORCID

<jats:p>The Kolbe reaction forms carbon-carbon bonds through electrochemical decarboxylative coupling. Despite more than a century of study, the reaction has seen limited applications owing to extremely poor chemoselectivity and reliance on precious metal electrodes. In this work, we present a simple solution to this long-standing challenge: Switching the potential waveform from classical direct current to rapid alternating polarity renders various functional groups compatible and enables the reaction on sustainable carbon-based electrodes (amorphous carbon). This breakthrough enabled access to valuable molecules that range from useful unnatural amino acids to promising polymer building blocks from readily available carboxylic acids, including biomass-derived acids. Preliminary mechanistic studies implicate the role of waveform in modulating the local pH around the electrodes and the crucial role of acetone as an unconventional reaction solvent for Kolbe reaction.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 81-87

Decrypting drug actions and protein modifications by dose- and time-resolved proteomics

Jana ZechaORCID; Florian P. BayerORCID; Svenja WiechmannORCID; Julia WoortmanORCID; Nicola Berner; Julian MüllerORCID; Annika SchneiderORCID; Karl KramerORCID; Mar Abril-GilORCID; Thomas HopfORCID; Leonie Reichart; Lin ChenORCID; Fynn M. HansenORCID; Severin LechnerORCID; Patroklos SamarasORCID; Stephan EckertORCID; Ludwig LautenbacherORCID; Maria Reinecke; Firas HamoodORCID; Polina ProkofevaORCID; Larsen VornholzORCID; Chiara FalcomatàORCID; Madeleine DorschORCID; Ayla SchröderORCID; Anton VenhuizenORCID; Stephanie WilhelmORCID; Guillaume MédardORCID; Gabriele Stoehr; Jürgen RulandORCID; Barbara M. GrünerORCID; Dieter SaurORCID; Maike Buchner; Benjamin Ruprecht; Hannes HahneORCID; Matthew TheORCID; Mathias WilhelmORCID; Bernhard KusterORCID

<jats:p>Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 93-101

New Products

<jats:p>A weekly roundup of information on newly offered instrumentation, apparatus, and laboratory materials of potential interest to researchers.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 102-102

Barriers to progress in pregnancy research: How can we break through?

Sarah J. StockORCID; Catherine E. AikenORCID

<jats:p>Healthy pregnancies are fundamental to healthy populations, but very few therapies to improve pregnancy outcomes are available. Fundamental concepts—for example, placentation or the mechanisms that control the onset of labor—remain understudied and incompletely understood. A key issue is that research efforts must capture the complexity of the tripartite maternal-placental-fetal system, the dynamics of which change throughout gestation. Studying pregnancy disorders is complicated by the difficulty of creating maternal-placental-fetal interfaces in vitro and the uncertain relevance of animal models to human pregnancy. However, newer approaches include trophoblast organoids to model the developing placenta and integrated data-science approaches to study longer-term outcomes. These approaches provide insights into the physiology of healthy pregnancy, which is the first step to identifying therapeutic targets in pregnancy disorders.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 150-153

Evolutionary constraint and innovation across hundreds of placental mammals

Matthew J. ChristmasORCID; Irene M. KaplowORCID; Diane P. GenereuxORCID; Michael X. DongORCID; Graham M. HughesORCID; Xue LiORCID; Patrick F. SullivanORCID; Allyson G. HindleORCID; Gregory AndrewsORCID; Joel C. Armstrong; Matteo BianchiORCID; Ana M. BreitORCID; Mark DiekhansORCID; Cornelia FanterORCID; Nicole M. FoleyORCID; Daniel B. GoodmanORCID; Linda GoodmanORCID; Kathleen C. KeoughORCID; Bogdan KirilenkoORCID; Amanda KowalczykORCID; Colleen LawlessORCID; Abigail L. LindORCID; Jennifer R. S. MeadowsORCID; Lucas R. MoreiraORCID; Ruby W. Redlich; Louise RyanORCID; Ross SwoffordORCID; Alejandro ValenzuelaORCID; Franziska Wagner; Ola WallermanORCID; Ashley R. BrownORCID; Joana DamasORCID; Kaili FanORCID; John GatesyORCID; Jenna GrimshawORCID; Jeremy JohnsonORCID; Sergey V. KozyrevORCID; Alyssa J. LawlerORCID; Voichita D. MarinescuORCID; Kathleen M. MorrillORCID; Austin OsmanskiORCID; Nicole S. PaulatORCID; BaDoi N. PhanORCID; Steven K. ReillyORCID; Daniel E. SchäfferORCID; Cynthia SteinerORCID; Megan A. SuppleORCID; Aryn P. WilderORCID; Morgan E. WirthlinORCID; James R. XueORCID; Bruce W. Birren; Steven GazalORCID; Robert M. HubleyORCID; Klaus-Peter Koepfli; Tomas Marques-BonetORCID; Wynn K. MeyerORCID; Martin NweeiaORCID; Pardis C. SabetiORCID; Beth ShapiroORCID; Arian F. A. SmitORCID; Mark S. SpringerORCID; Emma C. TeelingORCID; Zhiping WengORCID; Michael HillerORCID; Danielle L. LevesqueORCID; Harris A. LewinORCID; William J. MurphyORCID; Arcadi NavarroORCID; Benedict PatenORCID; Katherine S. PollardORCID; David A. RayORCID; Irina RufORCID; Oliver A. RyderORCID; Andreas R. PfenningORCID; Kerstin Lindblad-TohORCID; Elinor K. KarlssonORCID; Gregory Andrews; Joel C. Armstrong; Matteo Bianchi; Bruce W. Birren; Kevin R. Bredemeyer; Ana M. Breit; Matthew J. Christmas; Hiram Clawson; Joana Damas; Federica Di Palma; Mark Diekhans; Michael X. Dong; Eduardo Eizirik; Kaili Fan; Cornelia Fanter; Nicole M. Foley; Karin Forsberg-Nilsson; Carlos J. Garcia; John Gatesy; Steven Gazal; Diane P. Genereux; Linda Goodman; Jenna Grimshaw; Michaela K. Halsey; Andrew J. Harris; Glenn Hickey; Michael Hiller; Allyson G. Hindle; Robert M. Hubley; Graham M. Hughes; Jeremy Johnson; David Juan; Irene M. Kaplow; Elinor K. Karlsson; Kathleen C. Keough; Bogdan Kirilenko; Klaus-Peter Koepfli; Jennifer M. Korstian; Amanda Kowalczyk; Sergey V. Kozyrev; Alyssa J. Lawler; Colleen Lawless; Thomas Lehmann; Danielle L. Levesque; Harris A. Lewin; Xue Li; Abigail Lind; Kerstin Lindblad-Toh; Ava Mackay-Smith; Voichita D. Marinescu; Tomas Marques-Bonet; Victor C. Mason; Jennifer R. S. Meadows; Wynn K. Meyer; Jill E. Moore; Lucas R. Moreira; Diana D. Moreno-Santillan; Kathleen M. Morrill; Gerard Muntané; William J. Murphy; Arcadi Navarro; Martin Nweeia; Sylvia Ortmann; Austin Osmanski; Benedict Paten; Nicole S. Paulat; Andreas R. Pfenning; BaDoi N. Phan; Katherine S. Pollard; Henry E. Pratt; David A. Ray; Steven K. Reilly; Jeb R. Rosen; Irina Ruf; Louise Ryan; Oliver A. Ryder; Pardis C. Sabeti; Daniel E. Schäffer; Aitor Serres; Beth Shapiro; Arian F. A. Smit; Mark Springer; Chaitanya Srinivasan; Cynthia Steiner; Jessica M. Storer; Kevin A. M. Sullivan; Patrick F. Sullivan; Elisabeth Sundström; Megan A. Supple; Ross Swofford; Joy-El Talbot; Emma Teeling; Jason Turner-Maier; Alejandro Valenzuela; Franziska Wagner; Ola Wallerman; Chao Wang; Juehan Wang; Zhiping Weng; Aryn P. Wilder; Morgan E. Wirthlin; James R. Xue; Xiaomeng Zhang;

<jats:p>Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth’s vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.</jats:p>

Palabras clave: Multidisciplinary.

Pp. No disponible

Insights into mammalian TE diversity through the curation of 248 genome assemblies

Austin B. OsmanskiORCID; Nicole S. PaulatORCID; Jenny KorstianORCID; Jenna R. GrimshawORCID; Michaela Halsey; Kevin A. M. SullivanORCID; Diana D. Moreno-SantillánORCID; Claudia Crookshanks; Jacquelyn Roberts; Carlos GarciaORCID; Matthew G. JohnsonORCID; Llewellyn D. DensmoreORCID; Richard D. Stevens; Jeb RosenORCID; Jessica M. StorerORCID; Robert HubleyORCID; Arian F. A. SmitORCID; Liliana M. DávalosORCID; Elinor K. KarlssonORCID; Kerstin Lindblad-TohORCID; David A. RayORCID; Gregory Andrews; Joel C. Armstrong; Matteo Bianchi; Bruce W. Birren; Kevin R. Bredemeyer; Ana M. Breit; Matthew J. Christmas; Hiram Clawson; Joana Damas; Federica Di Palma; Mark Diekhans; Michael X. Dong; Eduardo Eizirik; Kaili Fan; Cornelia Fanter; Nicole M. Foley; Karin Forsberg-Nilsson; Carlos J. Garcia; John Gatesy; Steven Gazal; Diane P. Genereux; Linda Goodman; Jenna Grimshaw; Michaela K. Halsey; Andrew J. Harris; Glenn Hickey; Michael Hiller; Allyson G. Hindle; Robert M. Hubley; Graham M. Hughes; Jeremy Johnson; David Juan; Irene M. Kaplow; Elinor K. Karlsson; Kathleen C. Keough; Bogdan Kirilenko; Klaus-Peter Koepfli; Jennifer M. Korstian; Amanda Kowalczyk; Sergey V. Kozyrev; Alyssa J. Lawler; Colleen Lawless; Thomas Lehmann; Danielle L. Levesque; Harris A. Lewin; Xue Li; Abigail Lind; Kerstin Lindblad-Toh; Ava Mackay-Smith; Voichita D. Marinescu; Tomas Marques-Bonet; Victor C. Mason; Jennifer R. S. Meadows; Wynn K. Meyer; Jill E. Moore; Lucas R. Moreira; Diana D. Moreno-Santillan; Kathleen M. Morrill; Gerard Muntané; William J. Murphy; Arcadi Navarro; Martin Nweeia; Sylvia Ortmann; Austin Osmanski; Benedict Paten; Nicole S. Paulat; Andreas R. Pfenning; BaDoi N. Phan; Katherine S. Pollard; Henry E. Pratt; David A. Ray; Steven K. Reilly; Jeb R. Rosen; Irina Ruf; Louise Ryan; Oliver A. Ryder; Pardis C. Sabeti; Daniel E. Schäffer; Aitor Serres; Beth Shapiro; Arian F. A. Smit; Mark Springer; Chaitanya Srinivasan; Cynthia Steiner; Jessica M. Storer; Kevin A. M. Sullivan; Patrick F. Sullivan; Elisabeth Sundström; Megan A. Supple; Ross Swofford; Joy-El Talbot; Emma Teeling; Jason Turner-Maier; Alejandro Valenzuela; Franziska Wagner; Ola Wallerman; Chao Wang; Juehan Wang; Zhiping Weng; Aryn P. Wilder; Morgan E. Wirthlin; James R. Xue; Xiaomeng Zhang;

<jats:p>We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.</jats:p>

Palabras clave: Multidisciplinary.

Pp. No disponible

Response to Comments on “Metabolic scaling is the product of life-history optimization”

Craig R. WhiteORCID; Lesley A. AltonORCID; Candice L. BywaterORCID; Emily J. LombardiORCID; Dustin J. MarshallORCID

<jats:p>Froese and Pauly argue that our model is contradicted by the observation that fish reproduce before their growth rate decreases. Kearney and Jusup show that our model incompletely describes growth and reproduction for some species. Here we discuss the costs of reproduction, the relationship between reproduction and growth, and propose tests of models based on optimality and constraint.</jats:p>

Palabras clave: Multidisciplinary.

Pp. No disponible

The contribution of historical processes to contemporary extinction risk in placental mammals

Aryn P. WilderORCID; Megan A. SuppleORCID; Ayshwarya SubramanianORCID; Anish MudideORCID; Ross SwoffordORCID; Aitor Serres-Armero; Cynthia SteinerORCID; Klaus-Peter Koepfli; Diane P. GenereuxORCID; Elinor K. KarlssonORCID; Kerstin Lindblad-TohORCID; Tomas Marques-BonetORCID; Violeta Munoz FuentesORCID; Kathleen FoleyORCID; Wynn K. MeyerORCID; Oliver A. RyderORCID; Beth ShapiroORCID; Gregory Andrews; Joel C. Armstrong; Matteo Bianchi; Bruce W. Birren; Kevin R. Bredemeyer; Ana M. Breit; Matthew J. Christmas; Hiram Clawson; Joana Damas; Federica Di Palma; Mark Diekhans; Michael X. Dong; Eduardo Eizirik; Kaili Fan; Cornelia Fanter; Nicole M. Foley; Karin Forsberg-Nilsson; Carlos J. Garcia; John Gatesy; Steven Gazal; Diane P. Genereux; Linda Goodman; Jenna Grimshaw; Michaela K. Halsey; Andrew J. Harris; Glenn Hickey; Michael Hiller; Allyson G. Hindle; Robert M. Hubley; Graham M. Hughes; Jeremy Johnson; David Juan; Irene M. Kaplow; Elinor K. Karlsson; Kathleen C. Keough; Bogdan Kirilenko; Klaus-Peter Koepfli; Jennifer M. Korstian; Amanda Kowalczyk; Sergey V. Kozyrev; Alyssa J. Lawler; Colleen Lawless; Thomas Lehmann; Danielle L. Levesque; Harris A. Lewin; Xue Li; Abigail Lind; Kerstin Lindblad-Toh; Ava Mackay-Smith; Voichita D. Marinescu; Tomas Marques-Bonet; Victor C. Mason; Jennifer R. S. Meadows; Wynn K. Meyer; Jill E. Moore; Lucas R. Moreira; Diana D. Moreno-Santillan; Kathleen M. Morrill; Gerard Muntané; William J. Murphy; Arcadi Navarro; Martin Nweeia; Sylvia Ortmann; Austin Osmanski; Benedict Paten; Nicole S. Paulat; Andreas R. Pfenning; BaDoi N. Phan; Katherine S. Pollard; Henry E. Pratt; David A. Ray; Steven K. Reilly; Jeb R. Rosen; Irina Ruf; Louise Ryan; Oliver A. Ryder; Pardis C. Sabeti; Daniel E. Schäffer; Aitor Serres; Beth Shapiro; Arian F. A. Smit; Mark Springer; Chaitanya Srinivasan; Cynthia Steiner; Jessica M. Storer; Kevin A. M. Sullivan; Patrick F. Sullivan; Elisabeth Sundström; Megan A. Supple; Ross Swofford; Joy-El Talbot; Emma Teeling; Jason Turner-Maier; Alejandro Valenzuela; Franziska Wagner; Ola Wallerman; Chao Wang; Juehan Wang; Zhiping Weng; Aryn P. Wilder; Morgan E. Wirthlin; James R. Xue; Xiaomeng Zhang;

<jats:p> Species persistence can be influenced by the amount, type, and distribution of diversity across the genome, suggesting a potential relationship between historical demography and resilience. In this study, we surveyed genetic variation across single genomes of 240 mammals that compose the Zoonomia alignment to evaluate how historical effective population size ( <jats:italic>N</jats:italic> <jats:sub>e</jats:sub> ) affects heterozygosity and deleterious genetic load and how these factors may contribute to extinction risk. We find that species with smaller historical <jats:italic>N</jats:italic> <jats:sub>e</jats:sub> carry a proportionally larger burden of deleterious alleles owing to long-term accumulation and fixation of genetic load and have a higher risk of extinction. This suggests that historical demography can inform contemporary resilience. Models that included genomic data were predictive of species’ conservation status, suggesting that, in the absence of adequate census or ecological data, genomic information may provide an initial risk assessment. </jats:p>

Palabras clave: Multidisciplinary.

Pp. No disponible