Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

The Future of Nutrition: An Insider’s Look at the Science, Why We Keep Getting It Wrong, and How to Start Getting It Right The Future of Nutrition: An Insider’s Look at the Science, Why We Keep Getting It Wrong, and How to Start Getting It

Palabras clave: Multidisciplinary.

Pp. 479-479

Funding databases for Ukrainian academics

Valentina Mosienko; Marina Pelepets; Sanita Reinsone; Michael Rose

Palabras clave: Multidisciplinary.

Pp. 480-480

Chinchilla conservation vs. gold mining in Chile

J. E. Jiménez; A. Deane; L. F. Pacheco; E. F. Pavez; J. Salazar-Bravo; P. Valladares Faúndez

Palabras clave: Multidisciplinary.

Pp. 480-481

A scuffle at sea

Jorge Hernández-Urcera; Manuel E. Garci

Palabras clave: Multidisciplinary.

Pp. 481-481

Q&A with Mani L. Bhaumik

Andrea Korte

<jats:p>Bhaumik Breakthrough of the Year Award to recognize individual researchers</jats:p>

Palabras clave: Multidisciplinary.

Pp. 482-482

In Science Journals

Michael Funk (eds.)

<jats:p> Highlights from the <jats:italic>Science</jats:italic> family of journals </jats:p>

Palabras clave: Multidisciplinary.

Pp. 483-485

In Other Journals

Caroline Ash; Jesse Smith (eds.)

<jats:p>Editors’ selections from the current scientific literature</jats:p>

Palabras clave: Multidisciplinary.

Pp. 484-485

Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics

Veer I. P. KeizerORCID; Simon Grosse-HolzORCID; Maxime WoringerORCID; Laura ZambonORCID; Koceila Aizel; Maud BongaertsORCID; Fanny DelilleORCID; Lorena Kolar-ZnikaORCID; Vittore F. ScolariORCID; Sebastian Hoffmann; Edward J. BaniganORCID; Leonid A. MirnyORCID; Maxime Dahan; Daniele FachinettiORCID; Antoine CoulonORCID

<jats:p>Our understanding of the physical principles organizing the genome in the nucleus is limited by the lack of tools to directly exert and measure forces on interphase chromosomes in vivo and probe their material nature. Here, we introduce an approach to actively manipulate a genomic locus using controlled magnetic forces inside the nucleus of a living human cell. We observed viscoelastic displacements over micrometers within minutes in response to near-piconewton forces, which are consistent with a Rouse polymer model. Our results highlight the fluidity of chromatin, with a moderate contribution of the surrounding material, revealing minor roles for cross-links and topological effects and challenging the view that interphase chromatin is a gel-like material. Our technology opens avenues for future research in areas from chromosome mechanics to genome functions.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 489-495

Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells

Tiankai ZhangORCID; Feng WangORCID; Hak-Beom Kim; In-Woo ChoiORCID; Chuanfei WangORCID; Eunkyung ChoORCID; Rafal KonefalORCID; Yuttapoom PuttisongORCID; Kosuke Terado; Libor KoberaORCID; Mengyun ChenORCID; Mei Yang; Sai BaiORCID; Bowen YangORCID; Jiajia SuoORCID; Shih-Chi Yang; Xianjie LiuORCID; Fan FuORCID; Hiroyuki YoshidaORCID; Weimin M. ChenORCID; Jiri BrusORCID; Veaceslav CoropceanuORCID; Anders HagfeldtORCID; Jean-Luc BrédasORCID; Mats FahlmanORCID; Dong Suk KimORCID; Zhangjun HuORCID; Feng GaoORCID

<jats:p> Record power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have been obtained with the organic hole transporter 2,2′,7,7′-tetrakis( <jats:italic>N</jats:italic> , <jats:italic>N</jats:italic> -di- <jats:italic>p</jats:italic> -methoxyphenyl-amine)9,9′-spirobifluorene (spiro-OMeTAD). Conventional doping of spiro-OMeTAD with hygroscopic lithium salts and volatile 4- <jats:italic>tert</jats:italic> -butylpyridine is a time-consuming process and also leads to poor device stability. We developed a new doping strategy for spiro-OMeTAD that avoids post-oxidation by using stable organic radicals as the dopant and ionic salts as the doping modulator (referred to as ion-modulated radical doping). We achieved PCEs of &gt;25% and much-improved device stability under harsh conditions. The radicals provide hole polarons that instantly increase the conductivity and work function (WF), and ionic salts further modulate the WF by affecting the energetics of the hole polarons. This organic semiconductor doping strategy, which decouples conductivity and WF tunability, could inspire further optimization in other optoelectronic devices. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 495-501

Mechanism-based design of agents that selectively target drug-resistant glioma

Kingson LinORCID; Susan E. GuebleORCID; Ranjini K. SundaramORCID; Eric D. HusemanORCID; Ranjit S. BindraORCID; Seth B. HerzonORCID

<jats:p> Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O <jats:sup>6</jats:sup> -methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 502-511