Catálogo de publicaciones - revistas

Compartir en
redes sociales


ACM Computing Surveys (CSUR)

Resumen/Descripción – provisto por la editorial en inglés
A journal of the Association for Computing Machinery (ACM), which publishes surveys, tutorials, and special reports on all areas of computing research. Volumes are published yearly in four issues appearing in March, June, September, and December.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1969 / hasta dic. 2023 ACM Digital Library

Información

Tipo de recurso:

revistas

ISSN impreso

0360-0300

ISSN electrónico

1557-7341

Editor responsable

Association for Computing Machinery (ACM)

País de edición

Estados Unidos

Fecha de publicación

Tabla de contenidos

A Survey of Parametric Static Analysis

Jihyeok Park; Hongki Lee; Sukyoung Ryu

<jats:p> Understanding program behaviors is important to verify program properties or to optimize programs. Static analysis is a widely used technique to approximate program behaviors via abstract interpretation. To evaluate the quality of static analysis, researchers have used three metrics: performance, precision, and soundness. The static analysis quality depends on the analysis techniques used, but the best combination of such techniques may be different for different programs. To find the best combination of analysis techniques for specific programs, recent work has proposed <jats:italic>parametric static analysis</jats:italic> . It considers static analysis as black-box parameterized by <jats:italic>analysis parameters</jats:italic> , which are techniques that may be configured without analysis details. We formally define the parametric static analysis, and we survey analysis parameters and their parameter selection in the literature. We also discuss open challenges and future directions of the parametric static analysis. </jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-37

A Survey on Session-based Recommender Systems

Shoujin Wang; Longbing Cao; Yan Wang; Quan Z. Sheng; Mehmet A. Orgun; Defu Lian

<jats:p>Recommender systems (RSs) have been playing an increasingly important role for informed consumption, services, and decision-making in the overloaded information era and digitized economy. In recent years, session-based recommender systems (SBRSs) have emerged as a new paradigm of RSs. Different from other RSs such as content-based RSs and collaborative filtering-based RSs that usually model long-term yet static user preferences, SBRSs aim to capture short-term but dynamic user preferences to provide more timely and accurate recommendations sensitive to the evolution of their session contexts. Although SBRSs have been intensively studied, neither unified problem statements for SBRSs nor in-depth elaboration of SBRS characteristics and challenges are available. It is also unclear to what extent SBRS challenges have been addressed and what the overall research landscape of SBRSs is. This comprehensive review of SBRSs addresses the above aspects by exploring in depth the SBRS entities (e.g., sessions), behaviours (e.g., users’ clicks on items), and their properties (e.g., session length). We propose a general problem statement of SBRSs, summarize the diversified data characteristics and challenges of SBRSs, and define a taxonomy to categorize the representative SBRS research. Finally, we discuss new research opportunities in this exciting and vibrant area.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-38

Semantic Information Retrieval on Medical Texts

Lynda Tamine; Lorraine Goeuriot

<jats:p>The explosive growth and widespread accessibility of medical information on the Internet have led to a surge of research activity in a wide range of scientific communities including health informatics and information retrieval (IR). One of the common concerns of this research, across these disciplines, is how to design either clinical decision support systems or medical search engines capable of providing adequate support for both novices (e.g., patients and their next-of-kin) and experts (e.g., physicians, clinicians) tackling complex tasks (e.g., search for diagnosis, search for a treatment). However, despite the significant multi-disciplinary research advances, current medical search systems exhibit low levels of performance. This survey provides an overview of the state of the art in the disciplines of IR and health informatics, and bridging these disciplines shows how semantic search techniques can facilitate medical IR. First,we will give a broad picture of semantic search and medical IR and then highlight the major scientific challenges. Second, focusing on the semantic gap challenge, we will discuss representative state-of-the-art work related to feature-based as well as semantic-based representation and matching models that support medical search systems. In addition to seminal works, we will present recent works that rely on research advancements in deep learning. Third, we make a thorough cross-model analysis and provide some findings and lessons learned. Finally, we discuss some open issues and possible promising directions for future research trends.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-38

A Survey of Smart Contract Formal Specification and Verification

Palina Tolmach; Yi Li; Shang-Wei Lin; Yang Liu; Zengxiang Li

<jats:p>A smart contract is a computer program that allows users to automate their actions on the blockchain platform. Given the significance of smart contracts in supporting important activities across industry sectors including supply chain, finance, legal, and medical services, there is a strong demand for verification and validation techniques. Yet, the vast majority of smart contracts lack any kind of formal specification, which is essential for establishing their correctness. In this survey, we investigate formal models and specifications of smart contracts presented in the literature and present a systematic overview to understand the common trends. We also discuss the current approaches used in verifying such property specifications and identify gaps with the hope to recognize promising directions for future work.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-38

Towards Interconnected Blockchains

Ankur Lohachab; Saurabh Garg; Byeong Kang; Muhammad Bilal Amin; Junmin Lee; Shiping Chen; Xiwei Xu

<jats:p>Unprecedented attention towards blockchain technology is serving as a game-changer in fostering the development of blockchain-enabled distinctive frameworks. However, fragmentation unleashed by its underlying concepts hinders different stakeholders from effectively utilizing blockchain-supported services, resulting in the obstruction of its wide-scale adoption. To explore synergies among the isolated frameworks requires comprehensively studying inter-blockchain communication approaches. These approaches broadly come under the umbrella of Blockchain Interoperability (BI) notion, as it can facilitate a novel paradigm of an integrated blockchain ecosystem that connects state-of-the-art disparate blockchains. Currently, there is a lack of studies that comprehensively review BI, which works as a stumbling block in its development. Therefore, this article aims to articulate potential of BI by reviewing it from diverse perspectives. Beginning with a glance of blockchain architecture fundamentals, this article discusses its associated platforms, taxonomy, and consensus mechanisms. Subsequently, it argues about BI’s requirement by exemplifying its potential opportunities and application areas. Concerning BI, an architecture seems to be a missing link. Hence, this article introduces a layered architecture for the effective development of protocols and methods for interoperable blockchains. Furthermore, this article proposes an in-depth BI research taxonomy and provides an insight into the state-of-the-art projects. Finally, it determines possible open challenges and future research in the domain.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-39

A Survey on Resilience in the IoT

Christian Berger; Philipp Eichhammer; Hans P. Reiser; Jörg Domaschka; Franz J. Hauck; Gerhard Habiger

<jats:p>Internet-of-Things (IoT) ecosystems tend to grow both in scale and complexity, as they consist of a variety of heterogeneous devices that span over multiple architectural IoT layers (e.g., cloud, edge, sensors). Further, IoT systems increasingly demand the resilient operability of services, as they become part of critical infrastructures. This leads to a broad variety of research works that aim to increase the resilience of these systems. In this article, we create a systematization of knowledge about existing scientific efforts of making IoT systems resilient. In particular, we first discuss the taxonomy and classification of resilience and resilience mechanisms and subsequently survey state-of-the-art resilience mechanisms that have been proposed by research work and are applicable to IoT. As part of the survey, we also discuss questions that focus on the practical aspects of resilience, e.g., which constraints resilience mechanisms impose on developers when designing resilient systems by incorporating a specific mechanism into IoT systems.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-39

A Survey of Automated Programming Hint Generation: The HINTS Framework

Jessica McBroomORCID; Irena KoprinskaORCID; Kalina YacefORCID

<jats:p>Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-27

Deep Neural Network–based Enhancement for Image and Video Streaming Systems: A Survey and Future Directions

Royson LeeORCID; Stylianos I. Venieris; Nicholas D. Lane

<jats:p>Internet-enabled smartphones and ultra-wide displays are transforming a variety of visual apps spanning from on-demand movies and 360°  videos to video-conferencing and live streaming. However, robustly delivering visual content under fluctuating networking conditions on devices of diverse capabilities remains an open problem. In recent years, advances in the field of deep learning on tasks such as super-resolution and image enhancement have led to unprecedented performance in generating high-quality images from low-quality ones, a process we refer to as neural enhancement. In this article, we survey state-of-the-art content delivery systems that employ neural enhancement as a key component in achieving both fast response time and high visual quality. We first present the components and architecture of existing content delivery systems, highlighting their challenges and motivating the use of neural enhancement models as a countermeasure. We then cover the deployment challenges of these models and analyze existing systems and their design decisions in efficiently overcoming these technical challenges. Additionally, we underline the key trends and common approaches across systems that target diverse use-cases. Finally, we present promising future directions based on the latest insights from deep learning research to further boost the quality of experience of content delivery systems.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-30

A Survey on Applications of Artificial Intelligence in Fighting Against COVID-19

Jianguo Chen; Kenli Li; Zhaolei Zhang; Keqin Li; Philip S. Yu

<jats:p>The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak. Most governments, enterprises, and scientific research institutions are participating in the COVID-19 struggle to curb the spread of the pandemic. As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic. In this survey, we investigate the main scope and contributions of AI in combating COVID-19 from the aspects of disease detection and diagnosis, virology and pathogenesis, drug and vaccine development, and epidemic and transmission prediction. In addition, we summarize the available data and resources that can be used for AI-based COVID-19 research. Finally, the main challenges and potential directions of AI in fighting against COVID-19 are discussed. Currently, AI mainly focuses on medical image inspection, genomics, drug development, and transmission prediction, and thus AI still has great potential in this field. This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19 with the goal of inspiring researchers to continue to maximize the advantages of AI and big data to fight COVID-19.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-32

Evolutionary Large-Scale Multi-Objective Optimization: A Survey

Ye Tian; Langchun Si; Xingyi Zhang; Ran Cheng; Cheng He; Kay Chen Tan; Yaochu Jin

<jats:p>Multi-objective evolutionary algorithms (MOEAs) have shown promising performance in solving various optimization problems, but their performance may deteriorate drastically when tackling problems containing a large number of decision variables. In recent years, much effort been devoted to addressing the challenges brought by large-scale multi-objective optimization problems. This article presents a comprehensive survey of stat-of-the-art MOEAs for solving large-scale multi-objective optimization problems. We start with a categorization of these MOEAs into decision variable grouping based, decision space reduction based, and novel search strategy based MOEAs, discussing their strengths and weaknesses. Then, we review the benchmark problems for performance assessment and a few important and emerging applications of MOEAs for large-scale multi-objective optimization. Last, we discuss some remaining challenges and future research directions of evolutionary large-scale multi-objective optimization.</jats:p>

Palabras clave: General Computer Science; Theoretical Computer Science.

Pp. 1-34