Catálogo de publicaciones - libros

Compartir en
redes sociales


Vascular Mechanics and Pathology

Mano J. Thubrikar

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Biomedical Engineering; Neurosciences; Cardiology; Pathology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-33816-3

ISBN electrónico

978-0-387-68234-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer US 2007

Tabla de contenidos

The Vein Graft

Mano J. Thubrikar

Populations of bacterial cells often coordinate their responses to changes in their local environmental conditions through “quorum sensing”, a cell-to-cell communication system employing small diffusible signal molecules. While there is considerable diversity in the chemistry of such signal molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical analysis which in turn has resulted in significant progress in understanding the molecular basis of quorum sensing-dependent gene expression. Consequently, the discovery and characterisation of natural molecules which antagonize quorum sensing-mediated responses has created new opportunities for the design of novel anti-infective agents which control infection through the attenuation of bacterial virulence.

Pp. 320-367

Anastomosis

Mano J. Thubrikar

Populations of bacterial cells often coordinate their responses to changes in their local environmental conditions through “quorum sensing”, a cell-to-cell communication system employing small diffusible signal molecules. While there is considerable diversity in the chemistry of such signal molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical analysis which in turn has resulted in significant progress in understanding the molecular basis of quorum sensing-dependent gene expression. Consequently, the discovery and characterisation of natural molecules which antagonize quorum sensing-mediated responses has created new opportunities for the design of novel anti-infective agents which control infection through the attenuation of bacterial virulence.

Pp. 368-379

Anastomotic Aneurysms and Anastomotic Intimal Hyperplasia

Mano J. Thubrikar

Populations of bacterial cells often coordinate their responses to changes in their local environmental conditions through “quorum sensing”, a cell-to-cell communication system employing small diffusible signal molecules. While there is considerable diversity in the chemistry of such signal molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical analysis which in turn has resulted in significant progress in understanding the molecular basis of quorum sensing-dependent gene expression. Consequently, the discovery and characterisation of natural molecules which antagonize quorum sensing-mediated responses has created new opportunities for the design of novel anti-infective agents which control infection through the attenuation of bacterial virulence.

Pp. 380-402

Intracranial Aneurysms

Mano J. Thubrikar

Populations of bacterial cells often coordinate their responses to changes in their local environmental conditions through “quorum sensing”, a cell-to-cell communication system employing small diffusible signal molecules. While there is considerable diversity in the chemistry of such signal molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical analysis which in turn has resulted in significant progress in understanding the molecular basis of quorum sensing-dependent gene expression. Consequently, the discovery and characterisation of natural molecules which antagonize quorum sensing-mediated responses has created new opportunities for the design of novel anti-infective agents which control infection through the attenuation of bacterial virulence.

Pp. 403-425

Aortic Aneurysms

Mano J. Thubrikar

Populations of bacterial cells often coordinate their responses to changes in their local environmental conditions through “quorum sensing”, a cell-to-cell communication system employing small diffusible signal molecules. While there is considerable diversity in the chemistry of such signal molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical analysis which in turn has resulted in significant progress in understanding the molecular basis of quorum sensing-dependent gene expression. Consequently, the discovery and characterisation of natural molecules which antagonize quorum sensing-mediated responses has created new opportunities for the design of novel anti-infective agents which control infection through the attenuation of bacterial virulence.

Pp. 426-468

Aortic Dissection

Mano J. Thubrikar

Populations of bacterial cells often coordinate their responses to changes in their local environmental conditions through “quorum sensing”, a cell-to-cell communication system employing small diffusible signal molecules. While there is considerable diversity in the chemistry of such signal molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical analysis which in turn has resulted in significant progress in understanding the molecular basis of quorum sensing-dependent gene expression. Consequently, the discovery and characterisation of natural molecules which antagonize quorum sensing-mediated responses has created new opportunities for the design of novel anti-infective agents which control infection through the attenuation of bacterial virulence.

Pp. 469-483