Catálogo de publicaciones - libros
Computer Vision in Human-Computer Interaction: ICCV 2005 Workshop on HCI, Beijing, China, October 21, 2005, Proceedings
Nicu Sebe ; Michael Lew ; Thomas S. Huang (eds.)
En conferencia: International Workshop on Human-Computer Interaction (HCI) . Beijing, China . October 21, 2005 - October 21, 2005
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
User Interfaces and Human Computer Interaction; Image Processing and Computer Vision; Computer Graphics; Pattern Recognition
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-29620-1
ISBN electrónico
978-3-540-32129-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Cobertura temática
Tabla de contenidos
doi: 10.1007/11573425_21
HMM Based Falling Person Detection Using Both Audio and Video
B. Uğur Töreyin; Yiğithan Dedeoğlu; A. Enis Çetin
Automatic detection of a falling person in video is an important problem with applications in security and safety areas including supportive home environments and CCTV surveillance systems. Human motion in video is modeled using Hidden Markov Models (HMM) in this paper. In addition, the audio track of the video is also used to distinguish a person simply sitting on a floor from a person stumbling and falling. Most video recording systems have the capability of recording audio as well and the impact sound of a falling person is also available as an additional clue. Audio channel data based decision is also reached using HMMs and fused with results of HMMs modeling the video data to reach a final decision.
Palabras clave: Hide Markov Model; Wavelet Coefficient; Audio Signal; Wavelet Domain; Fall Detection.
- Applications | Pp. 211-220
doi: 10.1007/11573425_22
Appearance Manifold of Facial Expression
Caifeng Shan; Shaogang Gong; Peter W. McOwan
This paper investigates the appearance manifold of facial expression: embedding image sequences of facial expression from the high dimensional appearance feature space to a low dimensional manifold. We explore Locality Preserving Projections (LPP) to learn expression manifolds from two kinds of feature space: raw image data and Local Binary Patterns (LBP). For manifolds of different subjects, we propose a novel alignment algorithm to define a global coordinate space, and align them on one generalized manifold. Extensive experiments on 96 subjects from the Cohn-Kanade database illustrate the effectiveness of the alignment algorithm. The proposed generalized appearance manifold provides a unified framework for automatic facial expression analysis.
Palabras clave: Facial Expression; Face Image; Local Binary Pattern; Facial Expression Recognition; Locally Linear Embedding.
- Applications | Pp. 221-230