Catálogo de publicaciones - libros

Compartir en
redes sociales


Computer Vision in Human-Computer Interaction: ICCV 2005 Workshop on HCI, Beijing, China, October 21, 2005, Proceedings

Nicu Sebe ; Michael Lew ; Thomas S. Huang (eds.)

En conferencia: International Workshop on Human-Computer Interaction (HCI) . Beijing, China . October 21, 2005 - October 21, 2005

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

User Interfaces and Human Computer Interaction; Image Processing and Computer Vision; Computer Graphics; Pattern Recognition

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-29620-1

ISBN electrónico

978-3-540-32129-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

HMM Based Falling Person Detection Using Both Audio and Video

B. Uğur Töreyin; Yiğithan Dedeoğlu; A. Enis Çetin

Automatic detection of a falling person in video is an important problem with applications in security and safety areas including supportive home environments and CCTV surveillance systems. Human motion in video is modeled using Hidden Markov Models (HMM) in this paper. In addition, the audio track of the video is also used to distinguish a person simply sitting on a floor from a person stumbling and falling. Most video recording systems have the capability of recording audio as well and the impact sound of a falling person is also available as an additional clue. Audio channel data based decision is also reached using HMMs and fused with results of HMMs modeling the video data to reach a final decision.

Palabras clave: Hide Markov Model; Wavelet Coefficient; Audio Signal; Wavelet Domain; Fall Detection.

- Applications | Pp. 211-220

Appearance Manifold of Facial Expression

Caifeng Shan; Shaogang Gong; Peter W. McOwan

This paper investigates the appearance manifold of facial expression: embedding image sequences of facial expression from the high dimensional appearance feature space to a low dimensional manifold. We explore Locality Preserving Projections (LPP) to learn expression manifolds from two kinds of feature space: raw image data and Local Binary Patterns (LBP). For manifolds of different subjects, we propose a novel alignment algorithm to define a global coordinate space, and align them on one generalized manifold. Extensive experiments on 96 subjects from the Cohn-Kanade database illustrate the effectiveness of the alignment algorithm. The proposed generalized appearance manifold provides a unified framework for automatic facial expression analysis.

Palabras clave: Facial Expression; Face Image; Local Binary Pattern; Facial Expression Recognition; Locally Linear Embedding.

- Applications | Pp. 221-230