Catálogo de publicaciones - libros
PID Controllers for Time-Delay Systems
Guillermo J. Silva Aniruddha Datta S. P. Bhattachaiyya
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-8176-4266-2
ISBN electrónico
978-0-8176-4423-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Birkhäuser Boston 2005
Cobertura temática
Tabla de contenidos
PID Stabilization of Arbitrary Linear Time-Invariant Systems with Time Delay
In this chapter we present an approach for solving the problem of finding the set of all PID controllers that stabilize an arbitrary -order plant with time delay. The results presented in Chapters 6 through 8 do not readily extend to the case of higher-order plants with time delay, and an alternative procedure is presented here. This procedure is based on a connection linking Pontryagin’s results on quasi-polynomials to the Nyquist criterion.
Pp. 243-263
Algorithms for Real and Complex PID Stabilization
This final chapter presents a summary of algorithms that can be used to generate the entire set of stabilizing PID controllers for single-input single-output (1) continuous-time rational plants of arbitrary order, (2) discrete-time rational plants of arbitrary order, and (3) continuous-time first-order plants with time delay. These algorithms follow from the material presented throughout the book. They display the rich mathematical structure underlying the topology of PID stabilizing sets. By presenting these algorithms without the highly technical details of the underlying theory, we seek to make the results accessible to as many engineers as possible. We have incorporated the bare minimum mathematical background required to make it self-contained.
Palabras clave: Phase Margin; Real Polynomial; GOTO Step; Rich Mathematical Structure; Robustness Specification.
Pp. 265-295