Catálogo de publicaciones - libros

Compartir en
redes sociales


PID Controllers for Time-Delay Systems

Guillermo J. Silva Aniruddha Datta S. P. Bhattachaiyya

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-8176-4266-2

ISBN electrónico

978-0-8176-4423-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Birkhäuser Boston 2005

Tabla de contenidos

PID Stabilization of Arbitrary Linear Time-Invariant Systems with Time Delay

In this chapter we present an approach for solving the problem of finding the set of all PID controllers that stabilize an arbitrary -order plant with time delay. The results presented in Chapters 6 through 8 do not readily extend to the case of higher-order plants with time delay, and an alternative procedure is presented here. This procedure is based on a connection linking Pontryagin’s results on quasi-polynomials to the Nyquist criterion.

Pp. 243-263

Algorithms for Real and Complex PID Stabilization

This final chapter presents a summary of algorithms that can be used to generate the entire set of stabilizing PID controllers for single-input single-output (1) continuous-time rational plants of arbitrary order, (2) discrete-time rational plants of arbitrary order, and (3) continuous-time first-order plants with time delay. These algorithms follow from the material presented throughout the book. They display the rich mathematical structure underlying the topology of PID stabilizing sets. By presenting these algorithms without the highly technical details of the underlying theory, we seek to make the results accessible to as many engineers as possible. We have incorporated the bare minimum mathematical background required to make it self-contained.

Palabras clave: Phase Margin; Real Polynomial; GOTO Step; Rich Mathematical Structure; Robustness Specification.

Pp. 265-295