Catálogo de publicaciones - libros
Cardiac Reconstructions with Allograft Tissues
Richard A. Hopkins
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Cardiac Surgery; Cardiology
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-94962-8
ISBN electrónico
978-0-387-26515-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
In Vivo Pulsatile Hemodynamics of Homografts
Jeff L. Myers; Richard A. Hopkins
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section IV - Cryopreserved Allograft Tissue for Cardiac Reconstruction | Pp. 100-103
Leaflet Endothelium
Flavian M. Lupinetti
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section V - Cell Biology of Heart Valve Leaflets | Pp. 107-113
Leaflet Interstitial Cells
Robert H. Messier; Patrick W. Domkowski; Richard A. Hopkins
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section V - Cell Biology of Heart Valve Leaflets | Pp. 114-117
Leaflet Interstitial Cell Growth and Recovery
Robert H. Messier; Diane Hoffman-Kim; Richard A. Hopkins
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section V - Cell Biology of Heart Valve Leaflets | Pp. 118-122
Activation of the Immune System by Cardiac Valve Allografts
Franciska Hoekstra; Christiaan Knoop; Ad Bogers; Willem Weimar
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section V - Cell Biology of Heart Valve Leaflets | Pp. 123-130
Application of Cryopreservation to Heart Valves
Lloyd Wolfinbarger; Kelvin G.M. Brockbank; Richard A. Hopkins
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section VI - Cryobiology of Heart Valve Preservation | Pp. 133-160
Cell Viability and Problems with Its Quantification
Diane Hoffman-Kim; Richard A. Hopkins
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section VI - Cryobiology of Heart Valve Preservation | Pp. 161-164
Factors Affecting Cellular Viability During Preimplantation Processing
Richard A. Hopkins; Diane Hoffman-Kim; Robert H. Messier; Patrick W. Domkowski
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section VI - Cryobiology of Heart Valve Preservation | Pp. 165-174
Cell Origins and Fates Following Transplantation of Cryopreserved Allografts
M.G. Hazekamp; D.R. Koolbergen; J. Braun; J.A. Bruin; C.J. Cornelisse; Y.A. Goffin; J.A. Huysmans
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section VI - Cryobiology of Heart Valve Preservation | Pp. 175-183
Resolution of the Conflicting Theories of Prolonged Cell Viability
Richard A. Hopkins
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section VI - Cryobiology of Heart Valve Preservation | Pp. 184-189