Catálogo de publicaciones - libros
Cardiac Reconstructions with Allograft Tissues
Richard A. Hopkins
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Cardiac Surgery; Cardiology
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-94962-8
ISBN electrónico
978-0-387-26515-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
The Use of Homograft Valves: Historical Perspective
Richard A. Hopkins
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section I - Original Principles | Pp. 3-13
Mayo Clinic Series
Robert B. Wallace; Thomas A. Orszulak
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section II - Major Clinical Series of Homograft Valve Transplants: Left Ventricular Outflow Tract | Pp. 17-22
University of Alabama at Birmingham Series
David C. McGiffin; James K. Kirklin
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section II - Major Clinical Series of Homograft Valve Transplants: Left Ventricular Outflow Tract | Pp. 23-29
Modified Root Replacement Concept: Influence of Implant Technique on Allograft Durability
William W. Angell; Aubyn Marath
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section II - Major Clinical Series of Homograft Valve Transplants: Left Ventricular Outflow Tract | Pp. 30-39
Great Ormond Street Series
Jaroslav Stark; Mila Stajevic-Popovic
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section III - Major Clinical Series of Homograft Valve Transplants: Right Ventricular Outflow Tract | Pp. 43-49
Denver Series
David R. Clarke; Deborah A. Bishop
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section III - Major Clinical Series of Homograft Valve Transplants: Right Ventricular Outflow Tract | Pp. 50-62
Toronto Series
William G. Williams
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section III - Major Clinical Series of Homograft Valve Transplants: Right Ventricular Outflow Tract | Pp. 63-73
Cryopreserved Cardiac Valves: Initial Experiences and Theories
Richard A. Hopkins
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section IV - Cryopreserved Allograft Tissue for Cardiac Reconstruction | Pp. 77-84
Surgery for Infections
David C. McGiffin; James K. Kirklin
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section IV - Cryopreserved Allograft Tissue for Cardiac Reconstruction | Pp. 85-94
Pulmonary Valve Autotransplant Procedure: Clinical Results Compared with Other Methods for Aortic Valve Replacement
Erle H. Austin
The research monograph is devoted to the study of bounds on time complexity in the worst case of decision trees and algorithms for decision tree construction. The monograph is organized in four parts. In the first part (Sects. 1 and 2) results of the monograph are discussed in context of rough set theory and decision tree theory. In the second part (Sect. 3) some tools for decision tree investigation based on the notion of decision table are described. In the third part (Sects. 4–6) general results about time complexity of decision trees over arbitrary (finite and infinite) information systems are considered. The fourth part (Sects. 7–11) contains a collection of mathematical results on decision trees in areas of rough set theory and decision tree theory applications such as discrete optimization, analysis of acyclic programs, pattern recognition, fault diagnosis and probabilistic reasoning.
Section IV - Cryopreserved Allograft Tissue for Cardiac Reconstruction | Pp. 95-99