Catálogo de publicaciones - libros

Compartir en
redes sociales


Acoustic Sensing Techniques for the Shallow Water Environment: Inversion Methods and Experiments

Andrea Caiti ; N. Ross Chapman ; Jean-Pierre Hermand ; Sérgio M. Jesus (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4372-7

ISBN electrónico

978-1-4020-4386-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media B.V. 2006

Tabla de contenidos

On the assessment of geoacoustic parameters in shallow water environments

Jean-Claude Le Gac; Yann Steéphan; Thierry Garlan; Nicholas Weber

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 1-15

Bayesian inversion of seabed reflection data

Stan E. Dosso; Charles W. Holland

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 17-27

Backpropagation techniques in ocean acoustic inversion: time reversal, retrogation and adjoint model – A review

Matthias Meyer; Jean - Pierre Hermand

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 29-46

Acoustic inversion at low kHz frequencies using an active, vertical line array

Paul C. Hines; Matt Coffin

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 47-55

Dispersion of broadband acoustic normal modes in the context of long range sediment tomography

Gopu Potty; James Miller

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 57-72

Characterization of local seabed properties using synthesized horizontal array data

Peter L. Nielsen; Mark Fallat; Christopher Harrison

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 73-86

Characterization of a range-dependent environment from towed array data

Mark Fallat; Peter Nielsen; Stan E. Dosso; Martin Siderius

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 87-97

Accounting for bias in horizontal wavenumber estimates due to source motion

Kyle M. Becker

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 99-108

Acoustic clutter from buried submarine mud volcanoes

Charles W. Holland; Anthony L. Gerig; Piero Boni

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 109-124

Nonlinear acoustical methods in the detection of gassy sediments

Jaroslaw Tegowski; Zygmunt Klusek; Jaromir Jakacki

We describe numerical simulations of spiral waves dynamics in the computational model of human atrial tissue with the Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was initiated by cross-field stimulation protocol, with and without preliminary “fatigue” by rapid stimulation of the model tissue for a long time. In all cases the spiral wave has finite lifetime and self-terminates. However the mechanism of self-termination appears to depend on the initiation procedure. Spiral waves in the “fresh” tissue typically terminate after a few rotations via dissipation of the excitation front along the whole of its length. The dynamics of spiral waves in “tired” tissue is characterized by breakups and hypermeander, which also typically leads to self-termination but only after a much longer interval of time. Some features of the observed behaviour can not be explained using existing simplified theories of dynamic instabilities and alternanses.

Pp. 125-136