Catálogo de publicaciones - libros
Constrained Control and Estimation: An Optimisation Approach
Graham C. Goodwin José A. De Doná María M. Seron
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-85233-548-9
ISBN electrónico
978-1-84628-063-4
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag London Limited 2005
Cobertura temática
Tabla de contenidos
Introduction
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 3-21
Overview of Optimisation Theory
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 23-62
Fixed Horizon Optimal Control with Constraints
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 63-83
Receding Horizon Optimal Control with Constraints
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 85-101
Constrained Linear Quadratic Optimal Control
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 103-123
Global Characterisation of Constrained Linear Quadratic Optimal Control
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 125-149
Regional Characterisation of Constrained Linear Quadratic Optimal Control
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 151-174
Computational Issues in Constrained Optimal Control
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 175-186
Constrained Estimation
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 187-216
Duality Between Constrained Estimation and Control
Graham C. Goodwin; José A. De Doná; María M. Seron
Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.
Part I - Foundations | Pp. 217-237