Catálogo de publicaciones - libros
Auditory Signal Processing: Physiology, Psychoacoustics, and Models
Daniel Pressnitzer ; Alain de Cheveigné ; Stephen McAdams ; Lionel Collet (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Neurobiology; Neurosciences; Otorhinolaryngology
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-21915-8
ISBN electrónico
978-0-387-27045-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
A computational model of cochlear nucleus neurons
Katuhiro Maki; Masato Akagi
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Brainstem signal processing | Pp. 84-90
Study on improving regularity of neural phase locking in single neurons of AVCN via a computational model
Kazuhito Ito; Masato Akagi
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Brainstem signal processing | Pp. 91-99
Fibers in the trapezoid body show enhanced synchronization to broadband noise when compared to auditory nerve fibers
Dries H. Louage; Marcel van der Heijden; Philip X. Joris
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Brainstem signal processing | Pp. 100-106
Representations of the pitch of complex tones in the auditory nerve
Leonardo Cedolin; Bertrand Delgutte
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Pitch | Pp. 107-116
Coding of pitch and amplitude modulation in the auditory brainstem: One common mechanism?
Lutz Wiegrebe; Alexandra Stein; Ray Meddis
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Pitch | Pp. 117-125
Pitch perception of complex tones within and across ears and frequency regions
Andrew J. Oxenham; Joshua G. Bernstein; Christophe Micheyl
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Pitch | Pp. 126-135
Internal noise and memory for pitch
Laurent Demany; Gaspard Montandon; Catherine Semal
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Pitch | Pp. 136-144
Time constants in temporal pitch extraction: A comparison of psychophysical and neuromagnetic data
André Rupp; Stefan Uppenkamp; Jen Bailes; Alexander Gutschalk; Roy D. Patterson
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Pitch | Pp. 145-153
Auditory processing at the lower limit of pitch studied by magnetoencephalography
Bernd Lütkenhöner; Christian Borgmann; Katrin Krumbholz; Stefan Seither; Annemarie Seither-Preisler
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Pitch | Pp. 154-161
Auditory maps in the midbrain: The inferior colliculus
Günter Ehret; Steffen R. Hage; Marina Egorova; Birgit A. Müller
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Frequency modulation | Pp. 162-168