Catálogo de publicaciones - libros

Compartir en
redes sociales


Infectious Diseases from Nature: Mechanisms of Viral Emergence and Persistence

C. J. Peters ; Charles H. Calisher (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Virology; Tropical Medicine

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-211-24334-3

ISBN electrónico

978-3-211-29981-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag/Wien 2005

Tabla de contenidos

Transient or occult HIV infections may occur more frequently than progressive infections: changing the paradigm about HIV persistence

G. K. Sahu; T. McNearney; A. Evans; A. Turner; S. Weaver; J. C. Huang; S. Baron; D. Paar; M. W. Cloyd

Evidence of transient HIV infections was found in 8 subjects at high-risk for HIV infection among 47 longitudinally studied over 2–5 (average ∼3.5) years, whereas only two subjects developed progressive infection. All of these subjects developed serum antibodies (Ab) to conformational epitopes of HIV gp41 (termed “early HIV Ab”), but the 8 transiently infected subjects lost this Ab within 4–18 months, and did not seroconvert to positivity in denatured antigen EIA or Western Blot (WB). However, the two progressively infected subjects eventually seroconverted in the EIA and WB tests within one to two months after the appearance of “early HIV Ab”. HIV and sequences were directly PCR amplified from the peripheral blood mononuclear cells (PBMCs) of two of the eight transiently infected subjects during the time of “early HIV Ab”-postivity, and these showed significant sequence divergence from the HIV strains in the laboratory, indicating that they were not laboratory contaminants. Genome identity typing (“paternity-typing”) of PBMC samples obtained at the time of “early HIV Ab”-positivity, and later when Ab was absent from each of the 8 subjects, showed that blood samples were not mixed-up. This provides further evidence that transient or occult infection with HIV does occur, and perhaps at a greater frequency than do progressive infections.

Pp. 131-145

under our noses and no one notices

D. H. Walker

, an obligately intracellular bacterium, resides within a cytoplasmic vacuole in macrophages, establishes persistent infection in natural hosts such as white-tailed deer and canids, and is transmitted transstadially and during feeding by ticks, particularly . Ehrlichial cell walls contain glycoproteins and a family of divergent 28 kDa proteins, but no peptidoglycan or lipopolysaccharide. The dense-cored ultrastructural form preferentially expresses certain glycoproteins, including a multiple repeat unit-containing adhesin. Ehrlichiae attach to L-selectin and E-selectin, inhibit phagolysosomal fusion, apoptosis, and JAK/STAT activation, and downregulate IL-12, IL-15, IL-18, TLR2 and 3, and CD14. Mouse models implicate overproduction of TNF-α by antigen-specific CD8 T lymphocytes in pathogenesis and strong type 1 CD4 and CD8 T lymphocyte responses, synergistic activities of IFN-γ and TNF-α, and IgG2a antibodies in immunity.

Human monocytotropic ehrlichiosis (HME) manifests as a flu-like illness that progresses in severity to resemble toxic shock-like syndrome, with meningoencephalitis or adult respiratory distress syndrome in some patients, and requires hospitalization in half. In immunocompromised patients, HME acts as an overwhelming opportunistic infection. In one family physician’s practice, active surveillance for three years revealed an incidence of 1000 cases per million population. Diagnosis employs serology or polymerase chain reaction, which are not utilized sufficiently to establish the true impact of this emerging virus-like illness.

Pp. 147-156

The role of reverse genetics systems in determining filovirus pathogenicity

S. Theriault; A. Groseth; H. Artsob; H. Feldmann

The family is comprised of two genera: and . To date minigenome systems have been developed for two Ebola viruses ( and [ZEBOV]) as well as for , the sole member of the genus. The use of these minigenome systems has helped characterize functions for many viral proteins in both genera and have provided valuable insight towards the development of an infectious clone system in the case of ZEBOV. The recent development of two such infectious clone systems for ZEBOV now allow effective strategies for experimental mutagenesis to study the biology and pathogenesis of one of the most lethal human pathogens.

Pp. 157-177

Structural biology of old world and new world alphaviruses

A. Paredes; S. Weaver; S. Watowich; W. Chiu

The 1918 influenza pandemic caused acute illness in 25–30% of the World’s population and resulted in the death of up to 40 million people. Using lung tissue of 1918 influenza victims, the complete genomic sequence of the 1918 influenza virus is being deduced. Neither the 1918 hemagglutinin nor neuraminidase genes possess mutations known to increase tissue tropicity that account for virulence of other influenza virus strains, such as A/WSN/33 or the highly pathogenic avian influenza H5 or H7 viruses. Using reverse genetics approaches, influenza virus constructs containing the 1918 hemagglutinin and neuraminidase on an A/WSN/33 virus background were lethal in mice. The genotypic basis of this virulence has not yet been elucidated. The complete sequence of the non-structural (NS) gene segment of the 1918 virus was deduced and also tested to determine the validity of the hypothesis that enhanced virulence in 1918 could have been due to type I interferon inhibition by the NS1 protein. Results from these experiments suggest that in human cells the 1918 NS1 is a very effective interferon antagonist. Sequence analysis of the 1918 influenza virus is allowing us to test hypotheses as to the origin and virulence of this strain. This information should help elucidate how pandemic influenza virus strains emerge and what genetic features contribute to virulence in humans.

Pp. 179-185

Species barriers in prion diseases — brief review

R. -A. Moore; I. Vorberg; S. -A. Priola1

Transmissible spongiform encephalopathies (TSEs or prion diseases) are neurological disorders associated with the aggregation of a pathologic isoform of a host-encoded protein, termed prion protein (PrP). The pathologic isoform of PrP, termed PrP, is a major constituent of the infectious agent. TSE diseases are characterized by neurodegenerative failure and inevitable morbidity. Bovine spongiform encephalopathy (BSE) has been transmitted from cattle to humans to cause a new variant of Creutzfeldt-Jakob syndrome. The potential for chronic wasting disease to similarly cross the species barrier from cervids to humans is considered unlikely but possible. Thus, understanding how TSE agents overcome resistance to transmission between species is crucial if we are to prevent future epidemics. The species barrier usually can be abrogated to varying degrees in laboratory animals. Studies done with transgenic animals, tissue culture, and cell-free assays established PrP as being necessary for TSE pathogenesis and illustrated that certain amino acid residues are more influential than others for conferring resistance to TSE agent transmission. The essence of what constitutes a TSE agent’s species compatibility is thought to be orchestrated by a complex interplay of contributions from its primary amino acid sequence, its glycoform patterns, and its three-dimensional structure.

Pp. 187-202

Academic science and the business of vaccines

R. E. Johnston

This chapter provides an overview of the current densitometry techniques that are used in children. The strengths and limitations of each of the techniques are discussed. Dualenergy x-ray absorptiometry (DXA) is discussed only briefly, as the remainder of this book concentrates on this technique in detail. Table 1 provides a technical overview of costs, uses, precision, and radiation exposure associated with densitometry methods. Radiation doses associated with other imaging modalities and with natural background sources are provided for comparison in Table 2.

Pp. 203-206

Emerging infectious diseases: the public’s view of the problem and what should be expected from the public health community

J. M. Hughes

In this review, I use the term “perpetuation” for persistence of a virus in a population, since this is a different phenomenon from persistence of a virus in an infected host. Important variables that influence perpetuation differ in small (<1,000 individuals) and large (>10,000) populations: in small populations, two important variables are persistence in individuals, and turnover of the population, while in large populations important variables are transmissibility, generation time, and seasonality. In small populations, viruses such as poliovirus that cause acute infections cannot readily be perpetuated, in contrast to viruses such as hepatitis B virus, that cause persistent infections. However, small animal populations can turnover significantly each year, permitting the perpetuation of some viruses that cause acute infections. Large populations of humans are necessary for the perpetuation of acute viruses; for instance, measles required a population of 500,000 for perpetuation in the pre-measles vaccine era. Furthermore, if an acute virus, such as poliovirus, exhibits marked seasonality in large populations, then it may disappear during the seasonal trough, even in the presence of a large number of susceptible persons. Eradication is the converse of perpetuation and can be used as a definitive approach to the control of a viral disease, as in the instance of smallpox. Therefore, the requirements for perpetuation have significant implications for practical public health goals.

Pp. 207-213