Catálogo de publicaciones - libros

Compartir en
redes sociales


From Data and Information Analysis to Knowledge Engineering: Proceedings of the 29th Annual Conference of the Gesellschaft für Klassifikation e.V. University of Magdeburg, March 9-11, 2005

Myra Spiliopoulou ; Rudolf Kruse ; Christian Borgelt ; Andreas Nürnberger ; Wolfgang Gaul (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-31313-7

ISBN electrónico

978-3-540-31314-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Berlin · Heidelberg 2006

Tabla de contenidos

Parameter Optimization in Automatic Transcription of Music

Claus Weihs; Uwe Ligges

Based on former work on automatic transcription of musical time series into sheet music (Ligges et al. (2002), Weihs and Ligges (2003, 2005)) in this paper parameters of the transcription algorithm are optimized for various real singers. Moreover, the parameters of various artificial singer models derived from the models of Rossignol et al. (1999) and Davy and Godsill (2002) are estimated. In both cases, optimization is carried out by the Nelder-Mead (1965) search algorithm. In the modelling case a hierarchical Bayes extension is estimated by WinBUGS (Spiegelhalter et al. (2004)) as well. In all cases, optimal parameters are compared to heuristic estimates from our former standard method.

- Music Analysis | Pp. 740-747

GfKl Data Mining Competition 2005: Predicting Liquidity Crises of Companies

Jens Strackeljan; Roland Jonscher; Sigurd Prieur; David Vogel; Thomas Deselaers; Daniel Keysers; Arne Mauser; Ilja Bezrukov; Andre Hegerath

Data preprocessing and a careful selection of the training and classification method are key steps for building a predictive or classification model with high performance. Here, we present the winner approaches submitted to the 2005 GfKl Data Mining Competition. The task to be solved for the competition was the prediction of a possible liquidity crisis of a company. The binary classification was to be based on a set of 26 variables describing attributes of the companies with unknown semantics.

- Data Mining Competition | Pp. 748-758