Catálogo de publicaciones - libros
From Data and Information Analysis to Knowledge Engineering: Proceedings of the 29th Annual Conference of the Gesellschaft für Klassifikation e.V. University of Magdeburg, March 9-11, 2005
Myra Spiliopoulou ; Rudolf Kruse ; Christian Borgelt ; Andreas Nürnberger ; Wolfgang Gaul (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-31313-7
ISBN electrónico
978-3-540-31314-4
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer Berlin · Heidelberg 2006
Tabla de contenidos
Parameter Optimization in Automatic Transcription of Music
Claus Weihs; Uwe Ligges
Based on former work on automatic transcription of musical time series into sheet music (Ligges et al. (2002), Weihs and Ligges (2003, 2005)) in this paper parameters of the transcription algorithm are optimized for various real singers. Moreover, the parameters of various artificial singer models derived from the models of Rossignol et al. (1999) and Davy and Godsill (2002) are estimated. In both cases, optimization is carried out by the Nelder-Mead (1965) search algorithm. In the modelling case a hierarchical Bayes extension is estimated by WinBUGS (Spiegelhalter et al. (2004)) as well. In all cases, optimal parameters are compared to heuristic estimates from our former standard method.
- Music Analysis | Pp. 740-747
GfKl Data Mining Competition 2005: Predicting Liquidity Crises of Companies
Jens Strackeljan; Roland Jonscher; Sigurd Prieur; David Vogel; Thomas Deselaers; Daniel Keysers; Arne Mauser; Ilja Bezrukov; Andre Hegerath
Data preprocessing and a careful selection of the training and classification method are key steps for building a predictive or classification model with high performance. Here, we present the winner approaches submitted to the 2005 GfKl Data Mining Competition. The task to be solved for the competition was the prediction of a possible liquidity crisis of a company. The binary classification was to be based on a set of 26 variables describing attributes of the companies with unknown semantics.
- Data Mining Competition | Pp. 748-758