Catálogo de publicaciones - libros

Compartir en
redes sociales


Plant Electrophysiology: Theory and Methods

Alexander G. Volkov (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Plant Physiology; Plant Biochemistry; Biological Techniques; Cell Biology; Plant Sciences

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-32717-2

ISBN electrónico

978-3-540-37843-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Cobertura temática

Tabla de contenidos

Effects of Electrical and Electromagnetic Fields on Plants and Related Topics

Andrew Goldsworthy

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 247-267

Long-Distance Electrical Signaling and Physiological Functions in Higher Plants

Jörg Fromm

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 269-285

Potassium Homeostasis in Salinized Plant Tissues

Tracey A. Cuin; Sergey Shabala

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 287-317

Electrophysiology in Mechanosensing and Wounding Response

Teruo Shimmen

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 319-339

Electrochemical Potential Around the Plant Root in Relation to Metabolism and Growth Acceleration

Tsutomu Takamura

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 341-374

Electrophysiology of Turgor Regulation in Charophyte Cells

Mary J. Beilby; Mary A. Bisson; Virginia A. Shepherd

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 375-406

Electrical Signals in Plants: Facts and Hypotheses

Eric Davies

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 407-422

Electrophysiology of Plant Gravitropism

Bratislav Stanković

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 423-436

Electrochemistry of Plant Life

Alexander G. Volkov; Courtney L. Brown

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 437-459

Electrophysiology and Plant Responses to Biotic Stress

Massimo Maffei; Simone Bossi

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Part II - Plant Electrophysiology | Pp. 461-481