Catálogo de publicaciones - libros
Plant Electrophysiology: Theory and Methods
Alexander G. Volkov (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Plant Physiology; Plant Biochemistry; Biological Techniques; Cell Biology; Plant Sciences
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-32717-2
ISBN electrónico
978-3-540-37843-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Effects of Electrical and Electromagnetic Fields on Plants and Related Topics
Andrew Goldsworthy
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 247-267
Long-Distance Electrical Signaling and Physiological Functions in Higher Plants
Jörg Fromm
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 269-285
Potassium Homeostasis in Salinized Plant Tissues
Tracey A. Cuin; Sergey Shabala
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 287-317
Electrophysiology in Mechanosensing and Wounding Response
Teruo Shimmen
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 319-339
Electrochemical Potential Around the Plant Root in Relation to Metabolism and Growth Acceleration
Tsutomu Takamura
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 341-374
Electrophysiology of Turgor Regulation in Charophyte Cells
Mary J. Beilby; Mary A. Bisson; Virginia A. Shepherd
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 375-406
Electrical Signals in Plants: Facts and Hypotheses
Eric Davies
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 407-422
Electrophysiology of Plant Gravitropism
Bratislav Stanković
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 423-436
Electrochemistry of Plant Life
Alexander G. Volkov; Courtney L. Brown
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 437-459
Electrophysiology and Plant Responses to Biotic Stress
Massimo Maffei; Simone Bossi
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Part II - Plant Electrophysiology | Pp. 461-481