Catálogo de publicaciones - libros

Compartir en
redes sociales


Electrostatic Accelerators: Fundamentals and Applications

Ragnar Hellborg (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-23983-3

ISBN electrónico

978-3-540-27095-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Cobertura temática

Tabla de contenidos

Tandem Terminal Ion Source

G.C. Harper

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 274-277

Ion Optics and Beam Transport

J. D. Larson

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 278-298

Beam Envelope Techniques for Ion-Optical Calculations

S. Bazhal; R. Hellborg

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 299-316

Equipment for Beam Diagnostics

M. Friedrich

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 317-327

Computer Control

M.L. Roberts

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 328-336

Radiation Protection at an Accelerator Laboratory

R. Hellborg; C. Samuelsson

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 337-364

Nonradiation Hazards and Safety Considerations

R. Hellborg; C. Samuelsson

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 365-368

Confined-Space Maintenance

G.A. Norton

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 369-371

Earthquake Protection — for Pelletrons

G.A. Norton

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 372-373

Earthquake Protection of the Bucharest FN Tandem Accelerator

S. Dobrescu; L. Marinescu

In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.

You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.

Part II - The Electrostatic Accelerator | Pp. 374-377