Catálogo de publicaciones - libros
Electrostatic Accelerators: Fundamentals and Applications
Ragnar Hellborg (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-23983-3
ISBN electrónico
978-3-540-27095-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Cobertura temática
Tabla de contenidos
Cascade Generators
R. Hellborg
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 104-109
Voltage Distribution Systems — Resistors and Corona Points
D. Weisser
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 110-122
Accelerator Tubes
H.R.McK. Hyder
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 123-146
Development of Tubes in Obninsk, Russia
V.A. Romanov
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 147-151
Stabilization
L. Rohrer; H. Schnitter
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 152-165
Stripper Systems
D. Weisser
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 166-180
Charge Exchange and Electron Stripping
H.J. Whitlow; H. Timmers
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 181-186
Carbon Stripper Foils — Preparation and Quality
V. Liechtenstein
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 187-191
Positive-Ion Sources
L. Bartha
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 192-221
Negative-Ion Formation Processes and Sources
G.D. Alton
In this chapter you learned about the details of .NET Remoting-based applications. You now know how lifetime is managed and how you can dynamically configure an object’s time to live. If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity to manage an object’s lifetime independently of any TTLs.
You also read about versioning, and you can now look at the whole application’s lifecycle over various versions and know what to watch out for in regard to SAOs and CAOs, and know how the ISerializable interface can help you when using [Serializable] objects.
On the last pages of this chapter, you read about how you can use delegates and events, and what to take care of when designing an application that relies on these features. In particular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best practice.
You should now be able to solve most challenges that might confront you during design and development of a .NET Remoting application. In the next two chapters, I will share some additional tips, best practices, and troubleshooting guides that you should take into account before designing your .NET Remoting-based solution.
Part II - The Electrostatic Accelerator | Pp. 222-273