Catálogo de publicaciones - libros
VEE Pro: Practical Graphical Programming
Robert B. Angus Thomas E. Hulbert
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-85233-338-1
ISBN electrónico
978-1-84628-104-4
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag London Limited 2005
Cobertura temática
Tabla de contenidos
Using VEE Pro to Create UserFunctions
Robert B. Angus; Thomas E. Hulbert
In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.
Pp. 11.1-11.12
Using VEE Pro for Application Simulations
Robert B. Angus; Thomas E. Hulbert
In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.
Pp. 12.1-12.18
Functions, Relations, and Filtering
Robert B. Angus; Thomas E. Hulbert
In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.
Pp. 13.1-13.18
Using and Applying VEE Pro Library Functions
Robert B. Angus; Thomas E. Hulbert
In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.
Pp. 14.1-14.22
Using the Sequencer to Create, Pass, and Compare Data
Robert B. Angus; Thomas E. Hulbert
In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.
Pp. 15.1-15.16
Logging, Storing, Selecting, and Analyzing Data
Robert B. Angus; Thomas E. Hulbert
In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.
Pp. 16.1-16.16
Applying Graphical Operator Interfaces and Filtering
Robert B. Angus; Thomas E. Hulbert
In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.
Pp. 17.1-17.17
Improving VEE Pro Program Productivity
Robert B. Angus; Thomas E. Hulbert
In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.
Pp. 18.1-18.21