Catálogo de publicaciones - libros

Compartir en
redes sociales


VEE Pro: Practical Graphical Programming

Robert B. Angus Thomas E. Hulbert

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-85233-338-1

ISBN electrónico

978-1-84628-104-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2005

Tabla de contenidos

Using VEE Pro to Create UserFunctions

Robert B. Angus; Thomas E. Hulbert

In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.

Pp. 11.1-11.12

Using VEE Pro for Application Simulations

Robert B. Angus; Thomas E. Hulbert

In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.

Pp. 12.1-12.18

Functions, Relations, and Filtering

Robert B. Angus; Thomas E. Hulbert

In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.

Pp. 13.1-13.18

Using and Applying VEE Pro Library Functions

Robert B. Angus; Thomas E. Hulbert

In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.

Pp. 14.1-14.22

Using the Sequencer to Create, Pass, and Compare Data

Robert B. Angus; Thomas E. Hulbert

In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.

Pp. 15.1-15.16

Logging, Storing, Selecting, and Analyzing Data

Robert B. Angus; Thomas E. Hulbert

In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.

Pp. 16.1-16.16

Applying Graphical Operator Interfaces and Filtering

Robert B. Angus; Thomas E. Hulbert

In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.

Pp. 17.1-17.17

Improving VEE Pro Program Productivity

Robert B. Angus; Thomas E. Hulbert

In this paper, we propose a new technique for higher circuit speed without increase in leakage current by using active body-bias controlling technique. Conventional body-bias controlling techniques face difficulties, such as long transition time of body voltage and large area penalty. To overcome these issues, we propose a Charge Recycling Active Body-bias Controlled (CRABC) circuit scheme on SOI which enables quick control of body voltage by using simple additional circuit. The SPICE simulation results have shown that CRABC shortens delay time by 20 %, and transition time for controlling body-bias by 98 %.

Pp. 18.1-18.21