Catálogo de publicaciones - libros
Vision with Direction: A Systematic Introduction to Image Processing and Computer Vision
Josef Bigun
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-27322-6
ISBN electrónico
978-3-540-27323-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Neuronal Pathways of Vision
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part I - Human and Computer Vision | Pp. 3-20
Color
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part I - Human and Computer Vision | Pp. 21-32
Discrete Images and Hilbert Spaces
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part II - Linear Tools of Vision | Pp. 35-56
Continuous Functions and Hilbert Spaces
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part II - Linear Tools of Vision | Pp. 57-60
Finite Extension or Periodic Functions—Fourier Coefficients
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part II - Linear Tools of Vision | Pp. 61-68
Fourier Transform—Infinite Extension Functions
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part II - Linear Tools of Vision | Pp. 69-83
Properties of the Fourier Transform
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part II - Linear Tools of Vision | Pp. 85-101
Reconstruction and Approximation
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part II - Linear Tools of Vision | Pp. 103-117
Scales and Frequency Channels
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part II - Linear Tools of Vision | Pp. 119-149
Direction in 2D
Josef Bigun
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part III - Vision of Single Direction | Pp. 153-207