Catálogo de publicaciones - libros
The Maintenance Management Framework: Models and Methods for Complex Systems Maintenance
Adolfo Crespo Márquez
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-84628-820-3
ISBN electrónico
978-1-84628-821-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag London Limited 2007
Cobertura temática
Tabla de contenidos
A Method to Design the Maintenance Plan
Adolfo Crespo Márquez
Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].
Part 3. - Developing the Maintenance Management Framework | Pp. 133-155
Models to Deal with Maintenance Capacity Planning
Adolfo Crespo Márquez
Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].
Part 3. - Developing the Maintenance Management Framework | Pp. 157-184
Models to Deal with Maintenance Activities Planning
Adolfo Crespo Márquez
Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].
Part 3. - Developing the Maintenance Management Framework | Pp. 185-223
Models to Deal with Maintenance Scheduling Issues
Adolfo Crespo Márquez
Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].
Part 3. - Developing the Maintenance Management Framework | Pp. 225-262
Overall Maintenance Management Assessment
Adolfo Crespo Márquez
Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].
Part 3. - Developing the Maintenance Management Framework | Pp. 263-271
Failures Impact on Life Cycle Cost Analysis
Adolfo Crespo Márquez
Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].
Part 3. - Developing the Maintenance Management Framework | Pp. 273-292
Maintenance Continuous Improvement Through Organizational Efficiency
Adolfo Crespo Márquez
Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].
Part 3. - Developing the Maintenance Management Framework | Pp. 293-303
The E-maintenance Revolution
Adolfo Crespo Márquez
Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].
Part 3. - Developing the Maintenance Management Framework | Pp. 305-327