Catálogo de publicaciones - libros

Compartir en
redes sociales


Advances in Modern Tourism Research: Economic Perspectives

Álvaro Matias ; Peter Nijkamp ; Paulo Neto (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Tourism Management; Methodology of the Social Sciences; Regional/Spatial Science; Development Economics; Economic Geography; Ecotoxicology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-7908-1717-1

ISBN electrónico

978-3-7908-1718-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Physica-Verlag 2007

Tabla de contenidos

Multicriteria Evaluation and Local Environmental Planning for Sustainable Tourism

Andrea De Montis; Giancarlo Deplano; Peter Nijkamp

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part II - New Operational Tools in Tourism Research | Pp. 207-232

Strategic Planning of Territorial Image and Attractability

Paulo Neto

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part II - New Operational Tools in Tourism Research | Pp. 233-256

A Comparison of Methods for Assessing the Short-Run Economic Impacts of Tourist Spending on a County Economy

Brian VanBlarcom; Kenneth F. Backman

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part III - Applied Country and Regional Studies | Pp. 259-273

Measuring the Impact of Tourism on Production by means of an Input-Output Model of Interior Flows. An Application to Galicia

Luís Castañón; Pereira Xesús

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part III - Applied Country and Regional Studies | Pp. 275-291

On “E-Attraction” Tourism Destination ” Extension and Application

Nicolas Peypoch; Bernardin Solonandrasana

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part III - Applied Country and Regional Studies | Pp. 293-306

The Use of the Internet in the Hotel Sector of the Balearic Islands: Evolution and Perceptions

À Vich-i-Martorell Gabriel; Llorenç Pou

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part III - Applied Country and Regional Studies | Pp. 307-324

Efficiency and Productivity of Italian Tourist Destinations: A Quantitative Estimation Based on Data Envelopment Analysis and the Malmquist Method

Maria Francesca Cracolici; Peter Nijkamp; Miranda Cuffaro

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part III - Applied Country and Regional Studies | Pp. 325-343

A Night at the Opera Festival: The Economics of Opera

Stephen Wanhill

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part III - Applied Country and Regional Studies | Pp. 345-365