Catálogo de publicaciones - libros
Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures Around the World
Nicola Pirrone ; Kathryn R. Mahaffey (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-24493-8
ISBN electrónico
978-0-387-24494-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media Inc. 2005
Cobertura temática
Tabla de contenidos
Terrestial Hg Fluxes: Is the Next Exchange Up, Down, or Neither?
Mae S. Gustin; Steven E. Lindberg
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-III - Chemical and Physical Processes | Pp. 241-259
Chemical Transformation of Gaseous Elemental Hg in the Atmosphere
Parisa A. Ariya; Kirk A. Peterson
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-III - Chemical and Physical Processes | Pp. 261-294
Modelling Chemical and Physical Processes of Hg Compounds in the Marine Boundary Layer
Ian M. Hedgecock; Nicola Pirrone
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-III - Chemical and Physical Processes | Pp. 295-317
Modelling Transport and Transformation of Hg and its Compounds in Continental Air Masses
Russell Bullock
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-III - Chemical and Physical Processes | Pp. 319-342
Exposure to Mercury in the Americas
Kathryn R. Mahaffey
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-IV - Human Exposure | Pp. 345-384
Exposure to Hg in the General Population of Europe and the Arctic
Lars Barregård
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-IV - Human Exposure | Pp. 385-403
Methylmercury Exposure in General Populations of Japan, Asia and Oceania
Mineshi Sakamoto; Akira Yasutake; Hiroshi Satoh
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-IV - Human Exposure | Pp. 405-419
Mercury Pollution from Artisanal Gold Mining in Block B, El Callao, Bolivar State, Venezuela
Marcello M. Veiga; Dario Bermudez; Heloisa Pacheco-Ferreira; Luiz Roberto Martins Pedroso; Aaron J. Gunson; Gilberto Berrios; Ligia Vos; Pablo Huidobro; Monika Roeser
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-IV - Human Exposure | Pp. 421-450
An Ecosystem Approach to Describe the Mercury Issue in Canada: From Mercury Sources to Human Health
Marc Lucotte; René Canuel; Sylvie Boucher de Grosbois; Marc Amyot; Robin Anderson; Paul Arp; Laura Atikesse; Jean Carreau; Laurie Chan; Steve Garceau; Donna Mergler; Charlie Ritchie; Martha J. Robertson; Claire Vanier
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-IV - Human Exposure | Pp. 451-466
The GEF/UNDP/UNIDO Global Mercury Project — Environmental and Health Results from a Small-Scale Gold Mining Site in Tanzania
D. Appleton; G. Drasch; S. Böse O’Reilly; G. Roider; R. Lister; H. Taylor; B. Smith; A. Tesha; C. Beinhoff
The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.
Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.
Part-IV - Human Exposure | Pp. 467-490