Catálogo de publicaciones - libros
Encyclopedic Dictionary of Polymers
Jan W. Gooch (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-31021-3
ISBN electrónico
978-0-387-30160-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag 2007
Cobertura temática
Tabla de contenidos
Diafoam
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- D | Pp. 272-272
Dial
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- D | Pp. 273-273
Diglycol ricinoleate
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- D | Pp. 296-297
Diffusivity of heat
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- D | Pp. 296-296
Dinitraniline orange
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- D | Pp. 304-305
Dogbone
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- D | Pp. 320-320
Electromagnetic spectrum
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- E | Pp. 349-349
Ethyl carbamate
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- E | Pp. 371-371
Ethyl citrate
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- E | Pp. 372-372
Film slitting
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- F | Pp. 405-405