Catálogo de publicaciones - libros
Encyclopedic Dictionary of Polymers
Jan W. Gooch (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-31021-3
ISBN electrónico
978-0-387-30160-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag 2007
Cobertura temática
Tabla de contenidos
Tri--butyl citrate
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- T | Pp. 1006-1007
Tunnel test
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- T | Pp. 1014-1014
Turbulence
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- T | Pp. 1015-1015
Unopened staple
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- U | Pp. 1028-1028
Velocity of a transverse wave
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- V | Pp. 1038-1038
Velocity of water waves
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- V | Pp. 1039-1039
Vulcanized oil
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- V | Pp. 1054-1054
Web
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- W | Pp. 1061-1061
Weft
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- W | Pp. 1062-1062
Zytel 31
Jan W. Gooch (eds.)
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.
- Z | Pp. 1086-1086